Ontrack Documentation 4.13.7

Damien Coraboeuf

Version 4.13.7

Table of Contents

1. Quick start
1.1. On Kubernetes
1.2. With Docker Compose
2. Installation
2.1. Docker Compose installation
2.2. Docker installation
2.3. Helm installation
2.4. Package installation
2.4.1. RPM installation
2.4.2. Debian installation
2.5. JAR installation
2.6. Installation dependencies
2.6.1. Postgres
2.6.2. Elasticsearch
2.6.3. RabbitMQ
3. Setup
3.1. Configuration as Code
3.1.1. [experimental] Casc secrets
3.1.2. Casc schema
3.1.3. Examples
3.1.4. Controls
3.1.5. Upload
3.1.6. Using a JSON schema to edit Casc YAML files
4. Authentication
4.1. Built-in authentication
4.2. LDAP authentication
4.2.1. LDAP general setup
4.2.2. LDAP group mapping
4.3. OpenID authentication
4.3.1. Keycloak setup
4.3.2. Okta setup
5. Concepts
6. Security
6.1. Concepts
6.1.1. Roles
6.1.2. Global roles
6.1.3. Project roles
6.1.4. Accounts

O 00 00 00 I O U1 U1 b W W W = =

N DN DN DN DN NN R R R R R R,))) s e s
G b W W W W NN © N 9 39 u g g U W W N = = O O O

6.1.5. Account groups
6.2. General settings
6.3. Extending the security
7. Feeding information in Ontrack
7.1. Using the API
7.2. Ontrack CLI
7.3. Jenkins plug-in
7.3.1. Jenkins plug-in
7.3.2. Jenkins pipeline library
7.4. GitHub
7.4.1. GitHub Ingestion Hook

7.4.2. Ontrack CLI & GitHub Actions

8. Features
8.1. Managing projects
8.2. Managing branches

8.2.1. Managing the branches in the project page

8.2.2. Branch favorites
8.2.3. Pull requests
8.2.4. Managing stale branches
8.2.5. Validation stamp filters
Using filters
Editing filters
Sharing

Authorisations

8.2.6. Validation stamp display options

8.3. Working with SCM
8.3.1. SCM Catalog
Model
SCM Catalog list
Orphan project decoration
Project labels
Teams
Catalog synchronization
GraphQL schema
Metrics

Administration

Specific configuration for GitHub

8.4. Workflows
8.4.1. Workflows definitions

8.4.2. Workflows nodes executors

8.4.3. Workflow templating

25
25
25
26
26
27
27
27
28
28
28
29
31
31
31
31
31
32
33
34
34
35
38
40
40
43
43
43
43
44
44
44
45
45
46
47
47
47
47
48
49

8.4.4. Workflows management
8.4.5. Workflows settings
8.5. Delivery metrics

8.5.1. Single project delivery metrics

8.5.2. End-to-end project delivery metrics

8.6. Auto versioning on promotion

8.6.1. When not to use auto versioning

8.6.2. General configuration
Queue configuration
Dedicated queues
8.6.3. Branch configuration
Targeting a series of branches
Branch expressions
®ex
&same
&most-recent
&same-release
Version source
Additional paths
Target files types
Maven POM file
YAML files
TOML files
Integrations
Jenkins pipeline
GitHub Actions
Examples
Gradle update for last release
NPM update for last release
8.6.4. Post processing
GitHub post-processing
Jenkins post-processing
8.6.5. Pull requests

General configuration

General configuration for GitHub

CLIENT mode

SCM mode

SCM mode for GitHub
8.6.6. Auto versioning checks
8.6.7. Audit logs

Audit cleanup

50
50
50
51
52
53
54
54
35
35
35
58
58
58
58
39
39
60
61
61
62
62
63
64
64
64
65
65
65
65
66
68
70
71
71
71
71
72
72
72
73

Audit metrics 73

8.6.8. Notifications 73
8.6.9. Cancellations 74
8.6.10. Metrics 74
8.7. Project indicators 77
8.7.1. Indicators authorization model 77
8.7.2. Indicator types management 78
Value types 79
8.7.3. Indicator edition 80
8.7.4. Indicator portfolios 81
Management of portfolios 82
Portfolio page 83
Portfolio edition 84
8.7.5. Indicator views 85
8.7.6. Importing categories and types 85
8.7.7. Exporting categories and types 86
8.7.8. Computing indicators 87
8.7.9. Configurable indicators 87

9. Integrations 89
9.1. Working with GitHub 89
9.1.1. General configuration 89
9.1.2. GitHub App authentication 89
Creating a GitHub app 89
Installing the GitHub app 90
Configuring authentication 90
GitHub app tokens 91
9.1.3. Project configuration 91
SCM Catalog configuration 91
9.1.4. GitHub metrics 91
9.2. GitHub Ingestion 92
9.2.1. GitHub ingestion features 92
Release property on tag 92
9.2.2. Ontrack setup 93
9.2.3. GitHub setup 93
9.2.4. Link to the GitHub configuration 93
9.2.5. Customization 94
Customization examples 97
Validation stamps 98
Configuration as code for projects and branches 99
Change log 99

vl 100

V2
9.2.6. General settings
9.2.7. Validation stamp names
9.2.8. Support for pull requests
9.2.9. Management
9.2.10. Metrics
Hook metrics
Queue metrics
Processing metrics
9.2.11. Configuration
Routing
Queues configurations
9.3. Working with Bitbucket Cloud
9.3.1. General configuration
Configuration as Code
9.3.2. Project configuration
9.4.JIRA integration
9.5. Artifactory integration
9.6. SonarQube integration
9.6.1. General configuration
9.6.2. Global settings
9.6.3. Project configuration
9.6.4. Identifying measures in SonarQube
9.6.5. Build measures
9.6.6. Export of measures
Collection metrics
Missing measures
Measures
9.7. Integration with Jenkins
9.7.1. Triggering Jenkins builds on notifications
Using the API
Definition as code
9.8. Notifications
9.8.1. Notification backends
9.8.2. Subscriptions
Local subscriptions
Global subscriptions
9.8.3. Recordings
9.8.4. Examples
9.8.5. Metrics
9.9. Integration with Slack

100
100
100
101
101
102
102
103
103
104
104
104
105
105
106
106
106
106
106
107
107
107
108
109
109
109
109
110
110
110
111
112
113
114
114
114
114
115
116
116
118

9.9.1. Slack setup
9.10. Webhooks
9.10.1. Definitions
9.10.2. Authentication
9.10.3. Timeouts
9.10.4. Global settings
9.10.5. Webhooks deliveries
9.10.6. Payloads
event payload
ping payload
9.10.7. Webhooks metrics
9.11. Email
9.11.1. Configuration
9.12. Terraform Cloud integration
9.13. Monitoring
9.13.1. Health
9.13.2. Metrics
List of metrics

9.14. Encryption service

9.14.1. Selection of the confidential store

9.14.2. File confidential store
9.14.3. Secret confidential store
9.14.4. JDBC confidential store
9.14.5. Vault confidential store
9.14.6. Migrating encryption keys
9.14.7. Losing the encryption keys

9.14.8. Adding custom confidential store

10. Ontrack API
10.1. Ontrack GraphQL API
10.2. Ontrack DSL
11. Administration
11.1. Accounts management
11.2. Management end points
11.2.1. REST info
11.2.2. Actuator end points
12. Development
12.1. Developing tests
12.1.1. Integration tests
12.1.2. Database integration tests
13. Architecture
13.1. Modules

119
119
119
120
120
120
120
121
121
123
123
123
123
123
126
126
126
126
128
128
128
128
129
129
130
130
131
132
132
132
133
133
133
133
134
136
136
136
136
137
137

13.2.1. RESOUTCES .« . . oo 138
13.2.2. ReSOUrcCe deCOTATOTS.ttt 138
13.3. FOTINS . oo 138
Form Object. 139
Flelds .. 140
Common field properties 140

RE LD PrO eIty . . o 140
Visiblelf Property 140

text field . ..o 140
password field 141

memo fleld 141
email fleld . . . 141

Ur L field . 141
namedEntries field 141

date fleld 142
yesno field 142
dateTime field 142

Int fleld . . 142
selection field 143
multi-strings field 143
multi-selection field 143
multi-formfield o 143
Creating your custom fields 143
Form usage on the client. 143
Fields rendering 143
13.4. Model. . .. 143
T4, CONCEPLS . . . oo 144
14.1. Model filtering 144
1400, JODS. o 145
Job architecture OVerview 145

Job registration 146
14.1.2. ENCryptiono o 147
14.2. Build filters 148
14.2.0.USAZE . - o oo 148
14.2.2. Implementation 149
14.2.3. Reference ServiCes 149
EntityDataStore 149
14.3. TeChnOlogy o 150
14.3.1. Client Side. oo 150

14.3.2. Server SIAe 150

14.3.3. Layers 150

15. Extending Ontrack 152
15.1. Preparing an extension 152
15.2. Extension ID 153
15.3. Coding an extension 153
15.4. Extension options 154
15.5. Writing tests for your extension 155
15.6. List of extension points 156
15.7. Running an extension 156

15.7.1. Using Gradle 156
15.8. Packaging an extension 157
15.9. Extension dependencies 157
15.10. Deploying an extension 157

15.10.1. Using the Docker image 157

15.10.2. Using the CentOS or Debian/Ubuntu package 158

15.10.3. In standalone mode 158

15.10.4. Extending properties 158

Java components 158
Web components 161
Property search 162
15.10.5. Extending decorators 163
Java components 163
Web components 164
15.10.6. Extending the user menu 165
Extension component 165
15.10.7. Extending pages 166
Extension menus 166
From the global user menu 166
From an entity page 166
Extension global settings 167
Extension page 167
Extension API 169
Extension API resource decorators 169

15.10.8. Extending event types 169

15.10.9. Extending validation data 170

15.10.10. Extending GraphQL 170

Preparing the extension 171
Custom types 171
Root queries 173
Extra fields 173

Built-in scalar fields 175

Testing GraphQL 175

15.10.11. Extending cache 175
15.10.12. Extending metrics 176
Meter registry direct usage 176
Validation run metrics 177

Run info listeners 177
Metrics export service 178
15.10.13. Using Kotlin in extensions 178
15.10.14. Extending the settings 179
15.10.15. Extending the security 182
Adding functions 182
Adding roles 184
15.10.16. Extending confidential stores 186
15.10.17. Free text annotations 186
15.10.18. Label providers 187
Implementation 187
Activation 188
15.10.19. Extending promotion checks 189
15.10.20. Extending the search 189
Search indexer overview 189
Search indexation 190
Search results 191
Search index items 192
Search indexation mapping 193
Search indexation jobs 194
Search result icon 195
Search indexing on events 195

16. Operations 197
16.1. Metrics 197
16.2. Elastic metrics 197
16.3. InfluxDB metrics 197
16.3.1. InfluxDB management 198
16.4. Logging 199
16.4.1. Enabling JSON logging 199
17. Appendixes 200
17.1. Configuration properties 200
17.1.1. Notifications configuration 200
17.1.2. WorkflowConfigurationProperties 201
17.1.3. General configuration 201
17.1.4. GitHub configuration 206

17.1.5. GitHub Ingestion configuration 206

17.1.6. Jenkins configuration 207

17.1.7. Auto-versioning configuration 207
17.1.8. Terraform Cloud configuration 208
17.1.9. Time since event metrics configuration 208
17.1.10. Git configuration 209
17.1.11. Git Search configuration 211
17.1.12. Queues configuration 211
17.1.13. Recordings configuration 212
17.1.14. CasC configuration 212
17.1.15. Indicators configuration 213
17.1.16. License configuration 214
17.1.17. Embedded license configuration 214
17.1.18. Fixed license configuration 214
17.1.19. StripeLicenseConfigurationProperties 214
17.1.20. Artifactory configuration 215
17.1.21. Vault configuration 215
17.1.22. InfluxDB configuration 215
17.1.23. ElasticSearch metrics configuration 217
17.1.24. RabbitMQ configuration 219
17.2. Templating engine 219
17.2.1. Execution contexts 220
Auto-versioning context 220
17.2.2. List of templating sources 221
Build.changelog 221
description 222
linked 223
meta 223
PromotionRun.changelog 224
qualifiedLongName 224
release 225
scmBranch 225
version 225
17.2.3. List of templating functions 226
datetime 226
lastPromotion 226
link 227
pipeline 227
since 228
slot 228
user 228

17.2.4. List of templating filters 228

lowercase 229

strong 229
uppercase 229
urlencode 229
17.2.5. List of special templating objects 229
Auto-versioning context (av) 229
Deployment context (deployment) 230
Information about the workflow (workflow) 231
Global information about the workflow (workflowInfo) 231
17.3. Event types 231
17.3.1. List of events 231
auto-versioning-error 233
auto-versioning-post-processing-error 233
auto-versioning-pr-merge-timeout-error 234
auto-versioning-success 234
delete_branch 235
delete_build 235
delete_configuration 235
delete_project 236
delete_promotion_level 236
delete_promotion_run 236
delete_validation_stamp 237
disable_branch 237
disable_project 237
enable _branch 237
enable_project 238
environment-creation 238
environment-deleted 238
environment-updated 239
image_promotion_level 239
image_validation_stamp 239
mock 239
new_branch 240
new_build 240
new_configuration 240
new_project 241
new_promotion_level 241
new_promotion_run 241
new_validation_run 242
new_validation_run_status 242

new_validation_stamp 242

property_change 243

property_delete 243
reorder_promotion_level 243
reorder_validation_stamp 244
slot-creation 244
slot-deleted 244
slot-pipeline-cancelled 245
slot-pipeline-creation 245
slot-pipeline-deployed 246
slot-pipeline-deploying 246
slot-pipeline-status-changed 247
slot-pipeline-status-overridden 247
slot-updated 247
update_branch 248
update_build 248
update_configuration 248
update_project 249
update_promotion_level 249
update_validation_run_status_comment 249
update_validation_stamp 250
worflow_standalone 250
17.4. Notifications 250
17.4.1. List of notification backends 250
17.4.2. Jenkins (jenkins) 251
17.4.3. Jira ticket creation (jira-creation) 251
17.4.4. Jira link creation (jira-1ink) 252
17.4.5. Jira Service Desk (jira-service-desk) 252
17.4.6. Mail (mail) 253
17.4.7. Ontrack validation (ontrack-validation) 254
17.4.8. Slack (slack) 254
17.4.9. Webhook (webhook) 254
17.4.10. Workflow (workfLow) 255
17.5. Workflow nodes executors 255
17.5.1. List of workflow node executors 255
17.6. List of properties 256
17.6.1. Artifactory promotion sync 257
17.6.2. Auto-versioning 257
17.6.3. Bitbucket Cloud configuration 258
17.6.4. Auto promotion levels 258
17.6.5. Auto promotion 258

17.6.6. Auto validation stamps 259

17.6.7. Build link display options
17.6.8. Links

17.6.9. Main build links

17.6.10. Message

17.6.11. Meta information

17.6.12. Previous promotion condition
17.6.13. Promotion dependencies
17.6.14. Release

17.6.15. Validation on release/label
17.6.16. Branching Model

17.6.17. Git branch

17.6.18. Git commit

17.6.19. Git configuration

17.6.20. GitHub configuration
17.6.21. GitHub Workflow Run
17.6.22. GitHub Workflow Job
17.6.23. GitLab configuration
17.6.24. Jenkins Build

17.6.25. Jenkins Job

17.6.26. JIRA Links to follow
17.6.27. SonarQube

17.6.28. Auto-disabling of branches based on patterns
17.6.29. Stale branches

17.6.30. Bitbucket Server configuration

259
259
260
260
260
261
261
262
262
262
262
263
263
263
264
264
265
265
265
266
266
267
267
267

Chapter 1. Quick start

1.1. On Kubernetes

You can install Ontrack using its Helm chart:

helm repo add ontrack https://nemerosa.github.io/ontrack-chart
To install the ontrack chart:

helm install ontrack ontrack/ontrack
To uninstall the chart:

helm delete ontrack

This installs 4 services:

Ontrack itself

» a Postgres 15 database

* an Elasticsearch 7 single node

a RabbitMQ message broker
o To connect to Ontrack, enable the ingress or activate a port forward.

See https://github.com/nemerosa/ontrack-chart for more options.

1.2. With Docker Compose

On a local machine, you can start Ontrack using Docker Compose:

curl -fsSLO https://raw.githubusercontent.com/nemerosa/ontrack/master/compose/docker-
compose.yml
docker compose up -d

This sets up:

* a Postgres database
* an ElasticSearch (single node)
* a RabbitMQ message broker

* Ontrack running on port 8080

https://github.com/nemerosa/ontrack-chart
https://github.com/nemerosa/ontrack-chart

Go to http://localhost:8080 and start using Ontrack.
The initial administrator credentials are admin / admin.
Where to go from there?

¢ learn how to feed information into Ontrack
¢ Jearn how to use the Ontrack UI

* ...0r to use its Ontrack API
You can also check the following sections:

e Installation

* Setup

http://localhost:8080

Chapter 2. Installation

There are several ways to install Ontrack.

2.1. Docker Compose installation

The fastest way to start Ontrack is to use Docker Compose, but it might not be adapted for a
production environment.

The Docker Compose file can be downloaded from:
https://github.com/nemerosa/ontrack/blob/4.13.7/compose/docker-compose.yml

You can simply run it using:
docker-compose up -d

This starts three services:

* Ontrack itself at http://localhost:8080
» a Postgres database
 an Elasticsearch single node

* a RabbitMQ message broker

Neither Postgres, Elasticsearch and RabbitMQ are exposed by default, but you can of course edit the
Docker Compose file at your convenience.

The version of Ontrack is set by default to 4 (latest 4.x version) but you can override it using the
ONTRACK_VERSION environment variable.

The memory settings and other JVM parameters for Ontrack can be passed using the JAVA_OPTIONS
environment variable, which defaults to -Xms1024m -Xmx1024m.

Other Ontrack configuration properties must be passed through environment variables.
Three named Docker volumes are created for the data to be persisted:

* ontrack_postgres
» ontrack_elasticsearch

e ontrack_data

For other volume configuration, please edit the Docker Compose file.

2.2. Docker installation

The Ontrack Docker image is available in the Docker Hub at https://hub.docker.com/r/nemerosa/

https://github.com/nemerosa/ontrack/blob/4.13.7/compose/docker-compose.yml
http://localhost:8080
https://hub.docker.com/r/nemerosa/ontrack

ontrack.

Each specific version is available and also a "latest" version per major and minor version. For
example:

e 4

* 4.0

* 4.0.0

To run Ontrack, you need to make sure that the minimal dependencies are available:

* Postgres
e Elasticsearch

* RabbitMQ
o See Installation dependencies for details.

You can then run Ontrack using:

docker container run \
--detach \
--publish 8080:8080 \
-e SPRING_DATASOURCE_URL=<Postgres Ontrack DB JDBC URL> \
-e SPRING_DATASOURCE_USERNAME=<Postgres Ontrack DB Username> \
-e SPRING_DATASOURCE_PASSWORD=<Postgres Ontrack DB Password> \
-e SPRING_ELASTICSEARCH_URIS=<Elasticsearch URL> \
-e SPRING_RABBITMQ HOST=<RabbitMQ Host>
-e SPRING_RABBITMQ_USERNAME=<RabbitMQ Username>
-e SPRING_RABBITMQ PASSWORD=<RabbitMQ Password>
nemerosa/ontrack:4

The memory settings and other JVM parameters for Ontrack can be passed using the JAVA_OPTIONS
environment variable.

Other Ontrack configuration properties must be passed through environment variables.

Optionally, a volume can be mapped to the Ontrack /var/ontrack/data Docker volume. This is
particularly needed when using a secret storage based on the file system (see Setup).

2.3. Helm installation

You can install Ontrack into a Kubernetes cluster using Helm:

helm repo add ontrack https://nemerosa.github.io/ontrack-chart
helm install my-ontrack-release ontrack/ontrack

https://hub.docker.com/r/nemerosa/ontrack

This installs 4 services:

* Ontrack itself
* a Postgres 11 database
* an Elasticsearch 7 single node

* a RabbitMQ message broker
To connect to Ontrack, enable the ingress or activate a port forward.

For more options and documentation, please check the chart repository at https://github.com/
nemerosa/ontrack-chart

2.4. Package installation

Ontrack provides installation packages for Debian & CentOS. Both packages can be downloaded in
the release page in GitHub: https://github.com/nemerosa/ontrack/releases.

To run Ontrack, you need to make sure that the minimal dependencies are available:

* Postgres
e Elasticsearch

« RabbitMQ

2.4.1. RPM installation

To install Ontrack using RPM:
rpm -1 ontrack.rpm

The following directories are created:

Directory Description

/opt/ontrack Binaries and scripts
/usr/lib/ontrack Working and configuration directory
/var/log/ontrack Logging directory

You can optionally create an application.yml configuration file in /usr/1lib/ontrack. For example, to
customise the port Ontrack is running on:

server:
port: 9080

Ontrack is installed as a service using /etc/init.d/ontrack.

https://github.com/nemerosa/ontrack-chart
https://github.com/nemerosa/ontrack-chart
https://github.com/nemerosa/ontrack/releases

Starting Ontrack

sudo service ontrack start
Status of Ontrack

sudo service ontrack status
Stopping Ontrack

sudo service ontrack stop

To upgrade Ontrack:

Stopping Ontrack

sudo service ontrack stop

Updating

sudo rpm --upgrade ontrack.rpm
Starting Ontrack

sudo service ontrack start

The optional /etc/default/ontrack file can be used to define environment variables like
JAVA_OPTIONS or SPRING_DATASOURCE_URL.

For example:

/etc/default/ontrack

JAVA_OPTIONS=-Xmx2048m
SPRING_DATASOURCE _URL=jdbc:postgres://pg/ontrack

Other Ontrack configuration properties can be passed the same way.

2.4.2. Debian installation

To install Ontrack using Debian:

dpkg -1 ontrack.deb

The following directories are created:

Directory Description

/opt/ontrack Binaries and scripts
/usr/lib/ontrack Working and configuration directory
/var/log/ontrack Logging directory

Ontrack is installed as a service using /etc/init.d/ontrack.

Starting Ontrack

sudo service ontrack start
Status of Ontrack

sudo service ontrack status
Stopping Ontrack

sudo service ontrack stop

The optional /etc/default/ontrack file can be used to define environment variables like
JAVA_OPTIONS or SPRING_DATASOURCE _URL.

For example:

/etc/default/ontrack

JAVA_OPTIONS=-Xmx2048m
SPRING_DATASOURCE _URL=jdbc:postgres://pg/ontrack

Other Ontrack configuration properties can be passed the same way.

2.5. JAR installation

Ontrack can be downloaded as a JAR and started as a JVM application.
To run Ontrack, you need to make sure that the minimal dependencies are available:

* Postgres
e Flasticsearch

* RabbitMQ
o You need a JDK 11 or better to run Ontrack.

Download the JAR from the Ontrack release page.

Start it using:
java -jar ontrack.jar

Options can be passed on the command line, either:

* using system properties:
-Dspring.datasource.url=...

e Or environment variables:

https://github.com/nemerosa/ontrack/releases

SPRING_DATASOURCE _URL=...

2.6. Installation dependencies

Ontrack relies on the following components to be available:

» Postgres - for storage of information
* Elasticsearch - for search indexation

» RabbitMQ - for asynchronous processing

2.6.1. Postgres

Versions 9.5.+ to version 11.+ of Ontrack have been tested.

By default, Ontrack will use the following configuration properties and their default values to
connect to Postgres:

Property Env variable Description Default value
spring.datasource.url SPRING_DATASOURCE_ JDBC URL to the jdbc:postgresql://loca
URL Postgres Ontrack DB Lhost/ontrack

spring.datasource.user SPRING_DATASOURCE_ Username used to ontrack
name USERNAME connect to the Postgres

Ontrack DB
spring.datasource.pass SPRING_DATASOURCE_ Password used to ontrack
word PASSWORD connect to the Postgres

Ontrack DB

Other properties are available in Spring Boot.

2.6.2. Elasticsearch

Version 7.5.+ has been tested.

By default, Ontrack will use the following configuration properties and their default values to
connect to ElasticSearch:

Property Env variable Description Default value
spring.elasticsearch.uri SPRING_ELASTICSEARC REST URI of http://localhost:9200
S H_URIS Elasticsearch

Other properties are available in Spring Boot.

2.6.3. RabbitMQ

Version 3.8.+ has been tested.

https://docs.spring.io/spring-boot/docs/2.7.18/reference/html/appendix-application-properties.html#data-properties
http://localhost:9200
https://docs.spring.io/spring-boot/docs/2.7.18/reference/html/appendix-application-properties.html#data-properties

By default, Ontrack will use the following configuration properties and their default values to
connect to Postgres:

Property Env variable Description Default value

spring.rabbitmq.host ~ SPRING_RABBITMQ_H RabbitMQ host name localhost
OST

spring.rabbitmq.userna SPRING_RABBITMQ_US RabbitMQ user name ontrack
me ERNAME

spring.rabbitmq.passw SPRING_RABBITMQ_PA RabbitMQ password ontrack
ord SSWORD

Other properties are available in Spring Boot.

https://docs.spring.io/spring-boot/docs/2.7.18/reference/html/appendix-application-properties.html#data-properties

Chapter 3. Setup

While Ontrack can be configured using the Ul, it’s recommended to use the Configuration as Code
(CasC) feature.

3.1. Configuration as Code

Ontrack supports to be configured as code by default. It uses a set of YAML resources defined as
comma-separated list of locations by the ontrack.config.casc.locations configuration property. For
example, when using the environment variables:

ONTRACK_CONFIG_CASC_LOCATIONS=file:/path/to/file.yaml, https://path.com/file

All YAML resources defined by those locations are merged together according to the following
rules:

 right-most files take precedence for single values

 arrays are always concatenated to each other

The list of locations can contain path to folders on a file system. In this case, Ontrack will use all the
files in this folder.

3.1.1. [experimental] Casc secrets

Secrets can be injected into Casc file using this syntax:
{{ secret.<base>.<name> }}
For example:
some-secret-field: {{ secret.my-secret.my-property }}

By default, this is interpolated and evaluated using the SECRET_<BASE>_<NAME> environment variable,
SECRET_MY_SECRET_MY_PROPERTY for the example above. If this environment variable value is my-
password, the final Casc file will be:

some-secret-field: my-password

Alternatively, the secrets can be mapped to files by settings the ontrack.config.casc.secrets.type
configuration property to file and the ontrack.config.casc.secrets.directory one to a valid
directory.

Ontrack will then look for the secrets in files called <base>/<name>.

10

In the example above, the value of the {{ secret.my-secret.my-property }} expression will be
looked for in the <directory>/my-secret/my-property file.

o The file secret mapping is particularly well suited for Kubernetes deployments.
See the ontrack-chart for more information.

3.1.2. Casc schema

All those files must comply with the Ontrack CasC format. This schema is available in the Ul in the
user menu at Configuration as code, and by clicking on the Show button right of the CasC schema
section:

home

Configuration as Code

CasC schema show

This goes to the page at http://localhost:8080/#/extension/casc/casc-schema :

home > CasC

Configuration as Code Schema
ontrack : Rooft of the configuration
config: List of configurations
oidc: List of OIDC providers
- OntrackOIDCProvider
clientId: String (required) OIDC client ID
clientSecret : String (required) OIDC client secret
description: String (required) Tooltip for this provider
groupFilter : String Regular expression used to filter groups associated with the OIDC user
id: String (required) Unique ID for this provider
issuerId: String (required) OIDC issueld URL
name : String (required) Display name for this provider
settings : Management of settings
github-scm-catalog : Seitings for collecting SCM Catalog from GitHub.
orgs : (required) orgs
- String String type
home-page : Settings to configure the home page.
maxBranches : Int (required) Maximum of branches to display per favorite project

maxProjects : Int (required) Maximum of projects starting from which we need to switch to a search mode

3.1.3. Examples

To configure the security settings so that all authenticated users have access to all the projects and
can participate in all of them:

11

https://github.com/nemerosa/ontrack-chart
http://localhost:8080/#/extension/casc/casc-schema

ontrack:
config:
settings:
security:
grantProjectViewToAll: true
grantProjectParticipationToAll: true

To add an OIDC provider (Okta for example):

ontrack:
config:
oidc:
- id: okta
name: My Okta
description: The Okta account used by my company
issueld: https://<okta domain>.okta.com/oauth2/default
clientId: <Client ID of the application in Okta>
clientSecret: <Client secret of the application in Okta>
groupFilter: ontrack-.*

To add a GitHub configuration based on an OAuth2 token:

ontrack:
config:
github:
- name: GitHub
token: <your secret token>

3.1.4. Controls
The Configuration as code configuration page is available at:

* user menu > Configuration as code

» directly at http://localhost:8080/#/extension/casc/casc-schema
On this page, you can:

o display the schema
 see the list of locations where Ontrack fetches its CasC YAML resources
* reload the configuration as code

* display the current configuration as YAML (handy when migrating an existing installation to
CasC)

Reloading the configuration as code can be done from the UI as mentioned above but also:

 through a PUT REST call at /extension/casc/reload:

12

http://localhost:8080/#/extension/casc/casc-schema

curl -X PUT --user admin <ontrack>/extension/casc/reload
¢ through the following GraphQL mutation:

mutation {
reloadCasc {
errors {
message

}

3.1.5. Upload

The default Casc setup relies on files (or URL) available from the Ontrack application and in a Saa$
context, these may not be available or even configurable.

A CasC upload endpoint can be enabled to allow users to upload their own Casc configuration, by
using the ontrack.config.casc.upload.enabled configuration property or
ONTRACK_CONFIG_CASC_UPLOAD_ENABLED environment property.

When done, it becomes possible to upload a YAML file, which is will be picked up next time the Casc
is reloaded. For example, given a casc.yaml file:

curl --user $USER:$TOKEN \
$URL/extension/casc/upload \
-F "file=@casc.yaml;type=application/yaml"

o The user must have the Global settings user rights (typically an administrator).

3.1.6. Using a JSON schema to edit Casc YAML files

You can download a [JSON Schema](https://json-schema.org/) that can be used to edit Casc YAML
files.

First, download this schema locally by navigating to System > Configuration as Code. Select Schema
and click on JSON Schema.

This offers to download an ontrack-casc-schema. json file: save it locally.

o The Ontrack Casc JSON schema is versioned using the Ontrack version you
download it from.

To use it for the edition of a Casc YAML file, you can do the following in Intellij IDEA:

* in the Settings, select Languages & Frameworks > Schema & DTDs > J[SON Schema Mappings

13

https://json-schema.org/

* in Schema file or URL, click on the folder icon and select the downloaded ontrack-casc-
schema. json file

* apply and save the settings

Open a YAML file. To associate it with the Ontrack Casc schema, click on the Schema component in
the bottom right corner of the file and select ontrack-casc.

You should now have auto-completion and validation.

14

Chapter 4. Authentication

Ontrack supports the following authentication backends:

¢ built-in (enabled by default)
* LDAP
* OpenlID

0 Ontrack is able to work with multiple sources of authentication.

4.1. Built-in authentication

Ontrack comes with its own registry to store accounts. In particular, it contains the built-in admin
user.

While having a fallback admin user, it’s not recommended to use the built-in
authentication for the rest of the users. Privilegiate using either the LDAP or OIDC
integrations for production usage.

No configuration is needed to enable the built-in authentication.
To create and manage accounts, go to your user menu and select Account management.

When user are connected using the built-in authentication mechanism, they are able to change
their password using the Change password user menu.

o Administrators can lock built-in users so they cannot change their password; this is
needed to create fixed guest accounts.

For the management of built-in accounts, see Accounts management.

4.2. LDAP authentication

It is possible to enable authentication using a LDAP instance and to use the LDAP-defined groups to
map them against Ontrack groups.

4.2.1. LDAP general setup

As an administrator, go to the Settings menu. In the LDAP settings section, click on Edit and fill the
following parameters:

e Enable LDAP authentication: Yes
* URL: URL to your LDAP
e User and Password: credentials needed to access the LDAP

» Search base: query to get the user

15

Search filter: filter on the user query
 Full name attribute: attribute which contains the full name, cn by default

* Email attribute: attribute which contains the email, email by default

Group attribute: attribute which contains the list of groups a user belongs to, member0f by default

Group filter: optional, name of the OU field used to filter groups a user belongs to

The list of groups (indicated by the memberOf attribute or any other attribute
defined by the Group attribute property) is not searched recursively and that only
the direct groups are taken into account.

For example:

Enable LDAP ® Yes O No
authentication

URL https://ldap.nemerosa.com:636

URL to the LDAP server. For example:
https://Idap.nemerosa.com:636

User Idap_ontrack

Name of the user used to connect to the LDAP server.

Password
Password of the user used to connect to the LDAP server.
Search base dc=nemerosa,dc=com
Query to get the user. For example: de=nemerosa,dc=com
Search filter (sAMAccountName={0})
Filter on the user query. {0} will be replaced by the user name. For
example: (sAMAccountName={0})
Full name displayName
attribute
Name of the attribute that contains the full name of the user.
Defaults to cn
Email attribute mail
Name of the attribute that contains the email of the user. Defaults
to email
Group attribute
Name of the attribute that contains the groups the user belongs to.
Defaults to memberOf)
Group filter
Name of the OU field used to filter groups a user belongs to
(optional).
(r) The settings shown above are suitable to use with an Activate Directory LDAP
- instance.

16

4.2.2. LDAP group mapping
A LDAP group a user belongs to can be used to map onto an Ontrack group.

As an administrator, go to the Account management menu and click on the LDAP mapping
command.

o This command is only available if the LDAP authentication has been enabled in the
general settings.

To add a new mapping, click on Create mapping and enter:

* the name of the LDAP group you want to map

¢ the Ontrack group which must be mapped

For example, if you map the ontrack_admin LDAP group to an Administrators group in Ontrack, any
user who belongs to ontrack_admin will automatically be assigned to the Administrators group
when connecting.

o This assignment based on mapping is dynamic only, and no information is stored
about it in Ontrack.

Note that those LDAP mappings can be generated using configuration as code.

Existing mappings can be updated and deleted.

4.3. OpenlD authentication

Ontrack supports Openld identify providers for authentication and group permissions.

Ontrack has been tested with Keycloak and Okta.

4.3.1. Keycloak setup
e Ontrack has been tested with Keycloak 12.0.4.

Given a Keycloak realm, the Ontrack client can be configured this way:

* client protocol: openid-connect

» valid redirect URLs: <ontrack url>/*

* base URL: <ontrack url>/1login/oauth2/code/<keycloak realm>
* web origins: <ontrack url>

If you want to use Keycloak for group mappings in Ontrack, go to Mappers and add the built-in
"groups" mapper:

17

https://openid.net
https://www.keycloak.org/

Settings Roles Client Scopes @ Mappers @ Scope @ Revocation Sessions @ Offline Access @ Installation @

Search... Q Createfl Add Builtin

Name Category Type Priority Order Actions

groups Token mapper User Realm Role 40 Edit Delete
—

On the Ontrack side, as an administrator:

* navigate to the OIDC providers menu
* click on "Create provider"
 add the following information:

o ID: unique ID for your provider. It must be aligned with the name of the Keycloak realm (see
Keycloak configuration above)

o Name: a display name, which will be used on the login page
o Description: used as a tooltip on the login page

o Issuer ID: <keycloak url>/auth/realms/<keycloak realm>

o Client ID: ID of the client in Keycloak

o Client secret: can be left blank for Keycloak

o Group filter: regular expression to filter the group list sent by Keycloak in the groups claim

If Ontrack runs behind a SSL termination proxy and if the HTTP headers are not
o all forwarded, the "Force HTTPS" option can be set to true in order to force the
redirect URI to use HTTPS.

In the OIDC provider list, you can optionally set a picture for this configuration. This picture will be
used on the login page. For example:

\ 4
4

Login with

{ c Keycloak r59193121

or

User name

Password

Sign in

When the users click on the button, they will be redirected to Keycloak for authentication.

Upon a first connection, an account will be created automatically on Ontrack, based on the
information returned by Keycloak.

@ Keycloak is better configured using Configuration as Code. See some examples
- here.

18

4.3.2. Okta setup
In Okta, an Ontrack application must be configured with the following parameters:

 application type: Web
* Allowed grant types:
o Client acting on behalf of a user:
= Authorization code ON
= Implicit (hyprid)
= Allow ID Token with implicit grant type ON

= Allow Access Token with implicit grant type ON

APPLICATION
Application name Ontrack Local
Application type Web

Allowed grant types Client acting on behalf of itself

Client Credentials
Client acting on behalf of a user

Authorization Code
Refresh Token
Implicit (Hybrid)

Allow ID Token with implicit grant type

Allow Access Token with implicit grant type

* Login redirect URIs: <ontrack url>/login/oauth2/code/okta
* Logout redirect URIs: <ontrack url>/logout

* Login initiated by: Either Okta or App

Application visibility:
o Display application icon to users ON
* Login flow:

o Redirect to app to initiate login (OIDC Compliant) ON

Initiate login URI: <ontrack url>/oauth2/authorization/okta

19

LOGIN

Login redirect URIs @ npriioonimeend®d9)/|ogin/oauth2/code/okta
Logout redirect URIs @ inbipyissunisesiniftd /logout

Login initiated by Either Okta or App

Application visibility Display application icon to users

Display application icon in the Okta Mobile app

Login flow Redirect to app to initiate login (OIDC Compliant)
Send ID Token directly to app (Okta Simplified)

Initiate login URI dnbipy/fivenineen®889/0auth2/authorization/okta

If you want to use Okta groups in the group mappings in Ontrack, go to Sign On section of the
application and make sure to select a list of groups (using a filter):

OpeniD Connect ID Token Edit

Issuer https://i.. B mokta.com

Audience u

Claims Claims for this token include all user attributes on the app
profile.

Groups claim type Filter

Groups claim filter @ groups Starts with ontrack

W Using Groups Claim

In this example, we select all groups whose name starts with ontrack.
On the Ontrack side, as an administrator:

* navigate to the OIDC providers menu
* click on "Create provider"”
* add the following information:
o ID: unique ID for your provider, typically okta
o Name: a display name, which will be used on the login page
o Description: used as a tooltip on the login page
o Issuer ID: https://<okta domain>.okta.com/oauth2/default
o Client ID of the application in Okta

o Client secret of the application in Okta

20

https://<okta

o Group filter: regular expression to filter the group list sent by Okta in the groups claim

If Ontrack runs behind a SSL termination proxy and if the HTTP headers are not
all forwarded, the "Force HTTPS" option can be set to true in order to force the
redirect URI to use HTTPS.

In the OIDC provider list, you can optionally set a picture for this configuration. This picture will be
used on the login page. For example:

_4
A4

Login with

Q' Okta

or

User name

Password

Sign in

When the users click on the button, they will be redirected to Okta for authentication.

Upon a first connection, an account will be created automatically on Ontrack, based on the
information returned by Okta.

(r) Okta is better configured using Configuration as Code. See some examples here.
-

21

Chapter 5. Concepts

The root entity in Ontrack is the project.

Project

Promotion run wWalidation run

Promotion |evel Run info | Validation run status Walidation stamp

L e

Several branches can be attached to a project. Builds can be created within a branch and linked to
other builds (same or other branches).

Promotion levels and validation stamps are attached to a branch:

* a promotion level is used to define the promotion a given build has reached. A promotion run
defines this association.

* a validation stamp is used to qualify some tests or other validations on a build. A validation run
defines this association. There can be several runs per build and per validation stamp. A run
itself has a sequence of statuses attached to it: passed, failed, investigated, etc.

Builds and validation runs can be attached to some "run info" which gives additional information
like the duration of the build or the validation.

Branches, promotion levels and validation stamps define the static structure of a project.

22

Chapter 6. Security

The Ontrack security is based on accounts and account groups, and on authorizations granted to
them.

6.1. Concepts

Each action in Ontrack is associated with an authorisation function and those functions are grouped
together in roles which are granted to accounts and account groups.

An account can belong to several account groups and his set of final authorisation functions will be
the aggregation of the rights given to the account and to the groups.

See Accounts management to manage accounts and groups.

6.1.1. Roles

o As of now, only roles can be assigned to groups and accounts, and the list of roles
and their associated functions is defined by Ontrack itself.

Ontrack distinguishes between global roles and project roles.

Extensions can contribute to built-in roles and functions - see Extending the security for details.

6.1.2. Global roles

An ADMINISTRATOR has access to all the functions of Ontrack, in all projects. At least such a role
should be defined.

By default, right after installation, a default admin account is created with the
o ADMINISTRATOR role, having admin as password. This password should be changed
as soon as possible.

A CREATOR can create any project and can, on all projects, configure them, create branches, create
promotion levels and validation stamps. This role should be attributed to service users in charge of
automating the definition of projects and branches.

An AUTOMATION user can do the same things than a CREATOR but can, on all projects,
additionally edit promotion levels and validation stamps, create builds, promote and validate them,
manage account groups and project permissions. This role is suited for build and integration
automation (CI).

A CONTROLLER can, on all projects, create builds, promote and validate them. It is suited for a
basic CI need when the Ontrack structure already exists and does not need to be created.

A GLOBAL VALIDATION MANAGER can manage validation stamps across all projects.

A PARTICIPANT can view all projects, and can add comments to all validation runs.

23

A READ_ONLY can view all projects, but cannot perform any action on them.

The global roles can only be assigned by an administrator, in the Account management page, by
going to the Global permissions command.

A global permission is created by associating:

* a permission target (an account or a group)

» aglobalrole
Creation:

1. type the first letter of the account or the group you want to add a permission for
2. select the account or the group
3. select the role you want to give

4, click on Submit

Global permissions are created or deleted, not updated.

6.1.3. Project roles

A project OWNER can perform all operations on a project but to delete it.

A project PARTICIPANT has the right to see a project and to add comments in the validation runs
(comment + status change).

A project VALIDATION_MANAGER can manage the validation stamps and create/edit the
validation runs.

A project PROMOTER can create and delete promotion runs, can change the validation runs
statuses.

A project PROJECT_MANAGER cumulates the functions of a PROMOTER and of a
VALIDATION_MANAGER. He can additionally manage branches (creation / edition / deletion) and
the common build filters. He can also assign labels to the project.

A project READ_ONLY user can view this project, but cannot perform any action on it.
Only project owners, automation users and administrators can grant rights in a project.
In the project page, select the Permissions command.

A project permission is created by associating:

* a permission target (an account or a group)

* aprojectrole
Creation:

1. type the first letter of the account or the group you want to add a permission for

24

2. select the account or the group
3. select the role you want to give

4, click on Submit

Project permissions are created or deleted, not updated.

6.1.4. Accounts
Accounts are created:

* by an administrator in the built-in authentication system, with a password stored and
encrypted in Ontrack itself

* upon login when using external authentication systems like a LDAP or Open ID provider.

6.1.5. Account groups

An administrator can create groups using a name and a description, and assign them a list of global
or project roles.

An account can be assigned to several groups.

o If an external authentication system, like a LDAP or Open ID provider, is enabled,
the external groups can be mapped to the account groups.

6.2. General settings

By default, all authenticated users have access to all the projects, in read only mode.

You can disable this global access by going to the Settings and click the Edit button in the General
section. There you can set the Grants project view to all option to No.

6.3. Extending the security

Extensions can extend the security model beyond what if defined in the Ontrack core. See
Extending the security for more details.

25

Chapter 7. Feeding information in Ontrack

Ontrack gathers and structures information which is sent by other tools in a CI/CD ecosystem or
collected from them.

Foremost among the tools which will feed information into Ontrack are the CI engines. They can
initialize projects and branches, they can create builds, validations and promotions, they can inject
meta-information like timings, test results or links between builds.

o Ontrack gathers also information out of ticketing systems, artifact managers or
source control systems. This aspect is covered in the Integrations chapter.

Ontrack provides an API for tools to inject data, but more specialized integrations are provided as
well:

* the Ontrack CLI
* the Ontrack Jenkins plug-in

* aset of Ontrack GitHub actions

7.1. Using the API

Ontrack provides a GraphQL API to interact with it:

* queries to get information from Ontrack

* mutations to inject information from Ontrack

Example: to create a new build for an existing project & branch:

mutation {
createBuild(input: {
projectName: "my-project",
branchName: "my-branch",
name: "1234",
runInfo: {
runTime: 12
}
HA
build {
id
}
errors {
message

See Ontrack GraphQL API for a complete information.

26

7.2. Ontrack CLI

Instead of using the API directly, you can use the Ontrack CLI, a multi-platform client which wraps
the API calls into convenient commands.

For example, to create a new build for an existing project & branch:

ontrack-cli build setup \
--project my-project \
--branch my-branch \
--build 1234

See the Ontrack CLI documentation for more information about the installation, configuration &
usage of this client.

7.3. Jenkins plug-in

If you’re using Jenkins as a CI engine, you can either use the Ontrack Jenkins plug-in or the Ontrack
Jenkins pipeline library.

7.3.1. Jenkins plug-in
The Ontrack Jenkins plug-in relies on API to inject data into Ontrack.

For example, to create a build:

pipeline {
stages {
stage('Build') {
/] ...
// Computes the ‘version' variable
/] ...
post {
success {
ontrackBuild(
project: 'my-project’,
branch: 'my-branch',
build: version,
)
}
}
}
}
}

a The Ontrack Jenkins plug-in will be deprecated at some point, in favor of using the
Ontrack Jenkins pipeline library described below.

27

https://github.com/nemerosa/ontrack-cli
https://github.com/nemerosa/ontrack-cli
https://jenkins.io
https://github.com/jenkinsci/ontrack-plugin
https://github.com/jenkinsci/ontrack-plugin
https://github.com/jenkinsci/ontrack-plugin

7.3.2. Jenkins pipeline library

The Ontrack Jenkins pipeline library wraps the Ontrack CLI into convenient pipeline steps.

o To be implemented. As much as possible, the pipeline library will mimic the steps
which were provided by the Jenkins plug-in.

For example, to create a build:

pipeline {
stages {
stage('Build") {
/] ...
// Computes the ‘version' variable
/] ...
post {
success {
ontrackBuild(
project: 'my-project’,
branch: 'my-branch',
build: version,
)
Iy
+
}
}
}

7.4. GitHub

There are several ways to integrate GitHub Actions workflows with Ontrack:
* ingestion of workflow data in Ontrack through a GitHub Webhook

* direct integration using GitHub Actions or the Ontrack CLI

7.4.1. GitHub Ingestion Hook

Integration of Ontrack inside of GitHub workflows is cumbersome and does not feel very natural.

A more seamless way to get GitHub workflows data into Ontrack is to work by ingesting the data
directly from the workflow, without even adapting it.

We can do this by registering a webhook at the repository or organization level.
See GitHub Ingestion for the detailed configuration of the hook and all its options.
As a quick start:

1. Generate a unique token randomly (GitHub suggests using ruby -rsecurerandom -e 'puts

28

SecureRandom.hex(20) "' but any other method would do)

2. In the repository or organization, register a Webhook:

o URL - <ontrack>/hook/secured/github/ingestion

- Content type - application/json

o Secret - the secret you generated in step (1)

o Permissions:

- Workflow jobs

o Workflow runs

o Pushes (for autoconfiguration)
3. In Ontrack, create at least one GitHub configuration

4. Still in Ontrack, go to the Settings > GitHub workflow ingestion section and set the token as
generated in step (1)

From now on, everytime a working runs in GitHub, data about its steps will be created
automatically in Ontrack.

7.4.2. Ontrack CLI & GitHub Actions
You can easily use the Ontrack CLI from your GitHub workflows by using the following actions:

* nemerosa/ontrack-github-actions-cli-setup - install, configures and use the CLI to setup a
project and branch in Ontrack based on GitHub information:

- name: Setup the CLI
uses: nemerosa/ontrack-github-actions-cli-setup@v1l
with:
github-token: ${{ github.token }}
only-for: nemerosa
url: <ontrack-url>
token: ${{ secrets.ONTRACK_TOKEN }}
config: github.com
indexation: 120

* nemerosa/ontrack-github-actions-cli-validation - creates a validation run for a build based on
GitHub information:

- name: Ontrack build validation
uses: nemerosa/ontrack-github-actions-cli-validation@main
with:
step-name: Ontrack build
validation: BUILD
build: ${{ github.run_number }}
token: ${{ github.token }}

29

https://github.com/nemerosa/ontrack-github-actions-cli-setup
https://github.com/nemerosa/ontrack-github-actions-cli-validation

Note that when nemerosa/ontrack-github-actions-cli-setup has been called into your workflow job,
the Ontrack CLI becomes available in all subsequent steps and be used directly:

- name: Setup the CLI
uses: nemerosa/ontrack-github-actions-cli-setup@v1l
with:
...
- name: Using the CLI
run: ontrack-cli ...

30

https://github.com/nemerosa/ontrack-github-actions-cli-setup

Chapter 8. Features
8.1. Managing projects

8.2. Managing branches

Several branches can be defined per project.

8.2.1. Managing the branches in the project page

If you click on the Show all branches button in the project page, you can display all the branches,
including the ones being disabled.

According to your authorizations, the following commands will be displayed as icons just on the
right of the branch name, following any other decoration:

* disabling the branch
» enabling the branch

* deleting the branch

feature-278-meta-info [

feature-280-meta-search « [0

master Disabling

release-2.0 [

This allows you to have quick access to the management of the branches in a project. Only the
deletion of a branch will prompt you about your decision.

8.2.2. Branch favorites

Instead of selectioning a project as a favorite, one might find more convenient to select branches
only.

This reduces the clutter on the home page when projects tend to have a lot of branches.

All favorite branches do appear on the home page, together with any favorite project:

31

Home

% Favourites

ontrack / release-3.36 Latest < 3.36.4 | | €& RELEASE < 3.36.4 O ONTRACK = 3.36.4
ontrack / release-3.35 Latest < 3.35.16 | | €& RELEASE 3.35.16 | | # ONTRACK % 3.35.14

versioning / release-2.7 Q7Y \cYoll]ile}

release-3.36 release-3.35 release-3.33 master
0 ONTRACK 9 3.36.4 | | €& RELEASE & 3.35.16 | & RELEASE 9 3.33.1 | | & RELEASE 9 master-fe0730d

The favorite branches of a given project do also appear on the project page:

ontrack O

ontrack @ ontrack

db:postgres language:groovy language:java language:javascript language:kotlin type:application S

% Favorite branches

(GCEREIRRGY [afest <9 3.36.4 | € RELEASE 9 3.36.4 | @ ONTRACK < 3.36.4

(GCEREIRRGE | [afest 9 3.35.16 | €9 RELEASE 9 3.35.16 | | # ONTRACK % 3.35.14

In both cases, following information is displayed:

 Jatest build

* latest build per promotion
0 Branches can be unselected as favorite using the star left of their name.

In order to select a branch as favorite, use the little star left of its name in the branch list in the

project page:

P Branches

Filter on branch names

feature-627-validation-run-status-

feature-631-status-message-links feature-629-build-link-label feature-628-vs-deletion-when-vs-filter

tooltip

feature-625-git-index feature-624-entity-controller-url

‘ % release-3.35

feature-625-git-log-grep @

feature-626-cors

release-3.36-beta release-3.34

* release-3.36

release-3.33

9 You can use this star to unselect it as well. When selected, the star is marked as
yellow.
8.2.3. Pull requests

When Git is enabled for a project, the Ontrack branches can point to either regular Git branches or
to pull requests when this feature is enabled.

w

2

See [git-pull-requests] for more information.

8.2.4. Managing stale branches

By default, Ontrack will keep all the branches of a project forever. This can lead to a big number of
branches to be displayed.

You can configure a project to disable branches after a given number of days has elapsed since the
last build, and then to delete them after an additional number of days has elapsed again.

To configure this:

* go to the project page

* select the Stale branches property and add it:

Stale branches 2l +

* set the number of days before disabling and the number of days before deleting

Stale branches

~

Disabling 30

branches after N
Number of days of inactivity after a branch is disabled. 0 means

(days) , .)
that the branch won't ever be disabled automatically.
Deleting 360 5
branches after N) -))
(days) more Number of days of inactivity after a branch is deleted, after it has
beendisabled automatically. 0 means that the branch won't ever
be deleted automatically.
Promotions to x PRODUCTION
keep
List of promotion levels which prevent a branch to be disabled or
deleted
Exclude branches release-.”
Regular expression to identify branches which will never be
disabled not deleted
... but release-1."

Can define a regular expression for exceptions to the previous rule

If the disabling days are set to 0, no branch will be ever disabled or deleted.

If the deleting days are set to 0, no branch will ever be deleted.

33

You can also set a list of promotion levels - a branch which is or has been promoted to such a
promotion level will not be eligible for being disabled or deleted.

In the sample above, the stale branches will be disabled after 60 days (not shown any longer by
default), and after again 360 days, they will be deleted (so after 390 days in total). Branches which
have at least one build being promoted to PRODUCTION will not be deleted or disabled.

Additional, two regular expressions can be used to add further protection against the disabling &
deletion of the branches:

* the first one ("includes") is used to select the branches which are not eligible to disabling and
deletion

* the second expression ("excludes") can be used to refine the first expression, by matching
branches which still must be disabled or deleted.

8.2.5. Validation stamp filters

When a branch defines many validation stamps, the view can become cluttered and not really
useful any longer, because displaying too much information.

Validation stamp filters can be defined to restrict the view to a set of known validation stamps.

Using filters

Validation stamp filters can be selected in the branch view, just on the left of the list of validation
stamp headers:

Filter ~ n T~
1 CLOUD [G] .
DEPLOYMENT

Filter ~ Os[aG]
TESTS [G]

Apr27,2017 7

<+ New filter...

When a filter is selected, it is marked as such and only associated validation stamp columns are
shown in the view:

i ©
= - |-
1 CLOUD [G] .
#2720 DEPLOYMENT
riter - [v os el
/ TESTS [G]
1 & Clear validation stamp filter
.+ New filter...]

The validation stamp filter menu is also marked in orange to indicate that a filter has been applied.

When the filter is applied, its name appears also in the URL. This can be used as a permalink:

© s s pranch o er=%)

34

You can remove the filter by selecting Clear validation stamp filter in the filter menu:

CLOUD [G]
DEPLOYMENT
v OS [G]
TESTS [G]

2 (J Clear validation stamp fiIter)

n * New filter...
Editing filters
a Only authorized users are allowed to edit the validation stamp filters for a branch.
See Authorisations for more details.

A validation stamp filter is defined by:

* aname

* alist of validation stamp names to include

While it is possible to edit a filter using a dialog (see later), it is far easier to use the in-place editor.

Start by creating a validation stamp filter by selecting the New Filter... entry in the filter menu:

YT~

CLOUD [G]
DEPLOYMENT
0S [G]

TESTS [G]

H (+ New filter..)

This displays a dialog to create the new filter:

35

Validation stamp filter

Name DOCUMENTATION| J
m Cancel
(r') Only the name is required and all current validation stamps filters are included by
- default.

When created, the filter can be directly edited in-place:

& Select all for DOCUMENTATION O Select none for DOCUMENTATION ¥ DOCUMENTATION done editing

&, W, @. ic

Filter + ﬂ

1
Apr27, 2017 7:43 PM

Filter v E

(|
@ L

The following actions are possible:

* by clicking on the Select none button, no validation stamps is associated with the filter.
* by clicking on the Select all button, all validation stamps are associated with the filter.

* by clicking on the Done with edition button, the in-place edition stops and the normal display is
resumed

You can also click on a validation stamp to remove it or to add it to the filter.

In case the validation stamp is associated with the filter, a minus icon appears close to its name. It it
is not associated, the icon is dimmed and a plus icon appears:

& Select all for DOCUMENTATION O Select none for DOCUMENTATION ¥ DOCUMENTATION done editing

(]
s s - s Soe 8.
Filter v a

1 J
Apr 27, 2017 7:43 PM -

Note that you can also stop the edition by selecting the eye icon in the menu:

36

CLOUD [G]
DEPLOYMENT

‘ + DOCUMENTATION O
0s [G]

TESTS [G]

2 Clear validation stamp filter

<+ New filter...

To start editing an existing filter, just click also on the eye icon close to its name:

| -

CLOUD [G]
DEPLOYMENT
’ v DOCUMENTATION O
0S [G]
TESTS [G]

2 Clear validation stamp filter

<+ New filter...

O Select any other filter, or removing the filter, will also stop the in-place edition.
-

To edit a filter directly, you can also select the pencil icon and edit the filter using a dialog:

CLOUD [€]
DEPLOYMENT

+ DOCUMENTATION O
0S [6]

TESTS [G]

2 Clear validation stamp filter

<+ New filter...

This displays an edition dialog allowing to change the name and the list of validation stamps.

37

Validation stamp filter

Name DOCUMENTATION
Validation stamps ONTRACK, SITE ~
v Select All || x Select None ‘1 Reset

ISearch... x | m Cancel

DOCKER
CENTOS
DEBIAN
DO

ONTRACK

SITE

For a filter associated with a branch (see below, sharing), names can be selected
among the validation stamps of the branch.

o For a filter associated with a project, the list of validation stamps for all the
branches is available.

For a global filter, names are no longer selected but must be edited.

Finally, to delete a filter, click on the trash icon:

CLOUD [G]
DEPLOYMENT
DOCUMENTATION [P] O
0S [G]

TESTS [G]

+ New filter...

I

e A confirmation will be asked before the deletion actually occurs.

Sharing

A filter is created by default at branch level and is only visible when the associated branch is
displayed.

An authorized user can:

* share the filter at project level - in this case, the filter is available for all the branches of the
project

* share the filter at global level - in this case, the filter is available for all projects and all branches

38

A filter shared at project level is shown with a [P] close to its name and a global filter with a [G]:

CLOUD [G]
DEPLOYMENT

v DOCUMENTATION [P]
0S [G]

TESTS [G]

2 Clear validation stamp filter

<+ New filter...

In the screenshot above:

e DEPLOYMENT is associated with the current branch
* DOCUMENTATION is associated with the project

* the other filters are global

To share a filter at project level, click on the share icon:

b 4

CLOUD [G]

' DEPLOYM ENO
DOCUMENTATION [P]
0S [G]

TESTS [G]

+ New filter...

AT WAaS _Rann Araaramnaar

To share a filter at global level, click on the share icon:

A

CLOUD [G]
DEPLOYMENT
DOCUMENTATION [PO
0S [G]

TESTS [G]

+ New filter...

IS Ao Maon Avyoaaroamn uoor

Authorisations

According to the role of the authenticated used, following actions are possible:

Scope Action Participant Validation Project Administrator
stamp manager/own
manager er

Branch Create Yes Yes Yes Yes

Branch Edit Yes Yes Yes Yes

Branch Delete Yes Yes Yes Yes

Branch Share to No Yes Yes Yes

project

Project Edit No Yes Yes Yes

Project Delete No Yes Yes Yes

Project Share to global No No No Yes

Global Edit No No No Yes

Global Delete No No No Yes

8.2.6. Validation stamp display options
In the branch view, you can tune the display of the validations using different options.

By default, you get all the validation stamps of the branch:

home > ontrack

release-4.1

(9} @ K @ He v o © & &] 2 4 & 3

Filter ~ = T~ -

415 < @ @ @ @ @ @ @ @ @ @ @ [] @ @ @

one 20,2021 227 1t

414 < @ @ o o [] @ @ @ @ @ @ e o @ @

Dec 29, 2021 12:54 PM

413 < @ @ @ @ @ @ @ @ @ @ @ [] @ @ @

Dec 26, 2021 8:26 PM

412 XD < @ @ @ @ @ @ @ @ @ @ @ o

Dec 26, 2021 1:17 PM

4141 < @ @ @ @ @ @ @ @ @ @ @ ®

one 20,2021 1102 At

410 @ @ o o @ @ @ o @ @)

Dec 16, 2021 3:28 AU

Filter~ &

You can restrict the number of validation stamps being displayed by using a validation stamp filter:

home b ontrack

release-4.1

v i @ &
Filter ~ Z

415 < @ o @ (]
poborp———
414 < @ @ [@
Dec 29, 2021 12:54 PM
413 < @ @ @ @
Dec 26, 2021 8:26 PM
L 2 < @ @ @ @
o
a1 < @ o [(]
‘Dec 20, 2021 11:02 AM
410 [® @ @

Dec 16, 2021 3:28 M

Filter ~ <

40

Additionally, you can display the names of the validation stamps by selecting the Display validation
stamp names option in the validation stamp filter menu:

This displays:
home - entrack + Greate build @ Disable branch ¢ Update branch 1 Delete branch *SBranch links X Close & Tools ~ = Switch
release-4.1
<
"
& & £ & & @j@ s
& o é@v" S
% % & &
& ‘73‘ & & & & 5 & & & 5
S o & :° & & & o &
S N & & & & & & & S & S &
& G I R T A T
P . 4 i ® 5
Q 0 ¢ @ < s e ¥ 2 4 4
Filter ~ [+ T~ ¥)) i . i i i @
415 < @ @ @ [] [] [] [] [] @ @ @ [] @ @ @
Dec 30, 2021 2:27 PM
414 10 < @ @ @ @ [] @ @ [] @ @ @ [] @ @ @
ooc 28,2021 12754 P
413 CIED) < @ @ @ [] @ @ [] [] @ @ @ @ @ @
ooc 26,2621 826 P
412 D) < @ @ @ [J @ @ [J @ @ @ @ [J
oc 26,2521 T P14
411 < @ @ @ @ @ @ @ @ @ @ @ &
Dec 20, 2021 11:02 AM
410 @ @ @ [] [] [] [] @ @ @ @
Dec 16, 2021 3:28 PM
Filter ~ [+
or with a filter:
home - enlrack: + Greate build @ Disable branch & Update branch 1 Delete branch “<Branch links X Close & Tools + = Switch
release-4.1
A
& &
& &
& & &
& & oF
£ & &
& & & o
g O o o
4’ . ¢ ¢
= @ ¥
Filter v c Ly
418 < @ @ @ @
ac 30,0021 2207 0
414 0 < @ @ [] @
Dec 25, 2021 12:54 PM
413 (58 < @ @)]
oc 26, 021 626 P
412 < @ @ @ @
ac 26,5501 F7PM
411 <] @)]
Dec 20, 2021 11:02 AM
410 @ [] [] @
o 16, 2001 3:20
Fiter~ = &

Finally, when dealing with too many validation stamps for the display to be OK, you can choose to
group validations per status:

And this displays:

41

home - antrack + Create build @ Disable branct

release-4.1

Dac 26, 2021 1:17 PM

oo < (@ Passe@} . £ MERGE Fane{j;;.
:;:;,m < . 11 Passel%l:_ﬁl . (O AGGEPTANCE. DEBIAN |nvest\gat|n§_;:_n . 2 Fa\le&_{j ‘ W vauLr Warnan:_Z'
:;:‘:6_ - < . 14 Passel:':l:j- . 5 MerGE Fajlet:1:}
412 < . 11 Passe@} . £ MerGe Fane{{j-
<

4.11

B 20,2001 1102 A (@ 11 Passed) | @ §5 MERGE Defective

410 (@ 9 Passed) ({ DOCUMENTATION.LATEST Explained) (¢ GITHUB.RELEASE Failed)
Dac 16, 2021 3:28 PM . . m P . O

Filter = =

When using a validation stamp filter, the validation stamps matched by the selected filter are
always displayed, on the left of the groups:

Pome onfrack + Create build @ Disable branch # Update branch 1 Delete
release-4.1
A
& &
& &
o <o
& & R
&
A 45‘ @‘5‘ o
vp“ G & o)

Filter - s

415 / N7)
Dec 30, 2021 2:27 PM () 14 Passed) . £ MERGE Falled)
Al () 11 Passed) ({ ACCEPTANCE.DEBIAN Investigating () 2 Falled) VAULT Warning)
Dec 29, 2021 12:54 PM . assed) . @ nvestigating | . alled @ v arning
4.1.3 [ERE] / \ ‘_,- - .‘.‘
Dec zﬁm (@ 14 Passed) . £5 vERGE Failed
41.2 (@ 11 Passed) (@ §% MERGE Faled)

Dec 26, 2021 1:17 PM

4.1.1

/ N p \
Dec 20, 2021 11:02 AM (L) 11 Passed | @ B MERGE Defective

4.1.0
Dec 16, 2021 3:28 PM

O OO0
@ 0 @0 0 & 00
@ 0 @ 0 0 @F
@ @ 0 0 0 0!
@ 0 0 0 @ ¢F

(@ 9 Passed) (() E& DOCUMENTATION.LATEST Explained) | () () GITHUB. RELEASE Failed)

Filter =

If one validation has a particular status, clicking on the validation displays the latest validation run,
and from there, you can progress its status and/or enter comments:

When several validations have the same status, the dialog will display the list of validations having
this status. Clicking on a validation will then display the latest validation run for this validation:

42

8.3. Working with SCM

Source Control Management (SCM) is at the core of Continuous Integration and Continuous
Delivery chains. It’s therefore not a surprise that they play a major role in Ontrack.

8.3.1. SCM Catalog

Ontrack allows to collect information about all registered SCMs and to correlate this information
with the Ontrack projects.

Model

A SCM Catalog entry represents a physical SCM repository which is accessible by Ontrack. An entry
contains the following information:

* SCM - type of SCM, like github or bitbucket.

* Configuration - associated configuration in Ontrack to access this repository (URL, credentials,
etc.).

* Repository - identifier for this repository. It depends on the type of SCM. For example, for
GitHub, it can be name of the repository, like nemerosa/ontrack.

A SCM catalog entry can be:

* linked if an Ontrack project exists which is associated to this repository

e unlinked otherwise

Some Ontrack projects are orphan if they are not associated with any repository accessible by
Ontrack or if their associated repository is not accessible.

SCM Catalog list

To access the SCM catalog, you must be logged in. You must select the SCM Catalog item in your user
menu.

The list looks like:
The Project column indicates if the entry is linked or unlinked. In case it is linked, a link to the
Ontrack project page is available.

Filtering is possible using text boxes at the top. You can also navigate back and forth in the list using
the Previous and Next buttons.

The main filter, labelled Only SCM entries, allows to select the type of entry:

* Only SCM entries - selected by default, shows all repositories accessible by Ontrack
» All entries and orphan projects - additionally, shows the orphan projects

* Linked entries only - shows only the entries which are linked to projects

43

* Unlinked entries only - shows only the unlinked entries

* Orphan projects only - shows only the orphan projects, as shown below:

In this case, only the link to the project is available since no repository information is accessible.

Orphan project decoration

Since orphan projects are an anomaly (because every Ontrack project should be associated with
some kind of SCM), they get a special decoration, so that they can easily be identified (and fixed):

Project labels

If the collection of project labels is enabled, the following labels will be set for projects:

» scm-catalog:entry when the project is associated with a SCM Catalog entry

* scm-catalog:no-entry when the project is NOT associated with a SCM Catalog entry

Those labels can be used to filter orphan projects on the home page for example, or in GraphQL
queries.

Teams

For SCM which allow for this, the SCM catalog collects the list of teams for each repositoy.

The teams collection is only enabled for GitHub right now.

o When trying to get the teams for GitHub, the GitHub token needs to have read:org
in its organization scope.

The teams do appear in the SCM catalog list and can be used to filter the SCM catalog entries:

home

SCM Catalog

M Previous 1-30/38) Next Only SCM entries ~ SCM Config Repository Project After Before

Toam 0 n o &

scM Config Repository * Project Last activity + Team(s) Collection time
github github.com i This project is not managed in Ontrack. Nov 19, 2013 Owners May 8, 2021 2:37 PM
github github.com Filter onteam ID/oFname i This project is not managed in Ontrack. Feb 3, 2019 - May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. Nov 25, 2017 - May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. Feb 14, 2017 - May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. Aug 28, 2019 - May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. Jul 26, 2015 Owners May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. Sep 10,2017 - May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. Oct 17, 2016 - May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. May 14, 2018 - May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. May 13, 2016 Owners May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. Jun 21, 2016 Owners May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. Jan 5, 2021 - May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. Jul 24, 2014 Owners May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. Sep 27, 2016 List of teams M2 8 2021 237 PM
github github.com i This project is not managed in Ontrack. Oct 24, 2020 - May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. Jun 29, 2016 - / May 8, 2021 2:37 PM
github github.com i This project is not managed in Ontrack. Sep 23,2017 - May 8, 2021 2:37 PM

github github.com nemerosa/ontrack & ontrack May 8, 2021 Owners May 8, 2021 2:37 PM
Ontrack-Collaborators

Each team is associated with a link to its page in the SCM.

44

The teams information is also available in the Ontrack project page:

home

ontrack ()

¥ Branches

Properties Ex

o GitHub configuration

nemerosa/ontrack @ github.com

Add a property... j
xtra information

SCM teams

e Owners (admin)
* Ontrack-Collaborators (push)

On this page, the role of the team for this project is also displayed, but usually, more details can be
accessed by following the link to the SCM team page.

Catalog synchronization

Synchronization between the SCM and Ontrack can be enabled:

* creating an Ontrack project automatically from an SCM repository

* disabling Ontrack projects when their repository is no longer present

These two synchronizations are distinct and configured with their own flag in the SCM Catalog
Synchronization settings.

GraphQL schema
The SCM Catalog is accessible through the Ontrack GraphQL schema.
At root level, the scmCatalog query allows to query the SCM Catalog itself and to filter the catalog.

For example, to get the list of orphan projects:

45

{
scmCatalog(link: "ORPHAN") {
pageltems {
project {
name
}
}
}
}

or to get the entries which are unlinked:

{
scmCatalog(link: "UNLINKED") {

pageltems {
entry {
scm
config
repository
repositoryPage
}
}
}
}

0 See the GraphQL schema documentation for more fields and filters.

Additionally, the scmCatalogEntry field is available on the Project tpe to provide information about
any associated SCM Catalog entry:

{
projects(name: "ontrack") {
scmCatalogEntry {
scm
config
repository
repositoryPage
}
}
}

Metrics

The following metrics are available:

» ontrack_extension_scm_catalog_total (gauge) - count of SCM catalog entries + orphan projects

46

* ontrack_extension_scm_catalog_entries (gauge) - count of SCM catalog entries
* ontrack_extension_scm_catalog_linked (gauge) - count of linked SCM catalog entries
» ontrack_extension_scm_catalog_unlinked (gauge) - count of unlinked SCM catalog entries

» ontrack_extension_scm_catalog_orphan (gauge) - count of orphan projects

Administration

This feature is enabled by default but can be controlled using some administrative jobs:

ID Category Type Description State Action Schedule
1 SCM jobs Getting catalog links Catalog links collection 0 Every day
2 SCM jobs SCM Catalog Collection of SCM Catalog ¢ Every day
3 SCM jobs Getting catalog metrics Collection of SCM Catalog metrics a Every day

* Collection of SCM Catalog - gets the list of repositories accessible from Ontrack. Runs once a day.

* Catalog links collection - gets the links between the projects and associated SCM repositories.
Runs once a day.

* Collection of SCM Catalog metrics - computes some metrics about the SCM catalog

Specific configuration for GitHub

The GitHub repositories are not collected unless their organization is specifically allowed. By
default, none are.

In order to enable the scanning of a GitHub organization, log as administrator, go to the Settings,
scroll to the GitHub SCM Catalog section and enter the names of the organizations to authorise for
collection. For example, below, only the nemerosa organization is allowed:

8.4. Workflows

Workflows allow the execution of several actions orchestrated in a DAG (directed acyclic graph).

As of version 4.8, workflows can only be triggered using the Notifications.

o There is already some partial and undocumented support through API calls to run
some standalone workflows but this is very experimental.

8.4.1. Workflows definitions
To run a workflow, you can define a notification whose channel is workflow.

This can be done through the UI or as code.

o Workflows definitions in the UI is only supported in the Next UI of Ontrack and
won’t be supported in the legacy UL

47

A workflow:

* has a name, used for information and display purposes

* has a list of nodes
Each node:

* has an ID which must be unique inside the workflow
* an executor ID that points to a workflow node executor
* some data for the workflow node executor

* alist of parent nodes

The list of parent nodes is what defines the workflow DAG.
0 When defining or running workflows, graph cycles are automatically detected.

Workflows notifications can be defined as code, like all other notifications.

For example:

channel: workflow
channelConfig:
workflow:
name: My workflow
nodes:
- id: ticket
executorId: notification
data:
channel: jira-creation
channelConfig:
Configuration for the ticket creation
- id: mail
executorId: notification
parents:
- id: ticket
data:
channel: mail
channelConfig:
Configuration for the mail
template: |
Link to ticket: ${workflow.ticket?path=url}

8.4.2. Workflows nodes executors
A workflow node executor is a component which is responsible to "run a node".

See Workflow nodes executors for a list of all existing workflow node executors.

48

8.4.3. Workflow templating
Many elements in the workflow definition are subject to templating.

The workflow name is itself considered as a template when being run as a notification (which is the
default in 4.8).

When using notifications as node executors, the configuration elements are templates as usual.

Note that for a workflow notification, the event is passed as a context element and all template
functions and sources are available.

Additionally, when a notification is run as part of a workflow, a new templating function is
available: workflow

This function allows the access to the output data of any successful node in the workflow.
For example, let’s take a workflow which:

* creates a ticket in Jira

e then send a link to this ticket with an email

channel: workflow
channelConfig:
workflow:
name: My workflow
nodes:
- id: ticket
executorId: notification
data:
channel: jira-creation
channelConfig:
Configuration for the ticket creation
- id: mail
executorId: notification
parents:
- id: ticket
data:
channel: mail
channelConfig:
Configuration for the mail
template: |
Link to ticket: ${workflow.ticket?path=url}

The ticket node runs and set some information in its output (see Jira ticket creation (jira-creation)
for the full details), including a url property.

Then, the mail node is run and is using the notification workflow node executor again, with the mail
channel being configured to send a mail.

49

This channel can use the template for the mail’s body and is using the workflow function to get the
output of the ticket node and the url property of its output.

8.4.4. Workflows management

The progress of running workflows can be accessed in Information > Workflow audit.
Clicking on a workflow displays more details about its current status, node per node.

When using the workflow notification channel, the workflow status link is also accessible from the
Information > Notification recordings, when selecting the notification.

8.4.5. Workflows settings
Workflow statuses are saved by default for 14 days.
To change this value, you can go to System > Settings > Workflows.

This can also be defined as code using CasC:

ontrack:
config:
settings:
workflows:
retentionDuration: 1209600000 # 14 days in ms

8.5. Delivery metrics

One of the core features of Ontrack is the assignment of promotion levels to some builds, either
explicitly from the CI or through auto promotion.

Delivery metrics are about measuring the performance and stability of these promotions on four
different axes:

* lead time to promotion - how long does it take from the moment a build is created to the
moment it is promoted to a given level? This gives an indication on the performance of your
delivery.

* frequency - how many promotions do you get over a given period of time? This gives an absolute
indicator about how often your delivery process performs.

* success rate - what is the percentage of builds reaching a given promotion level? While 100% is
not a goal (because of the very nature of a delivery pipeline, where failure is expected when
finding actual issues), high values indicate a high stability of your delivery process.

* time to restore - given a build which is not promoted, how long does it take to restore this
promotion? The time it takes to fix an issue is a strong indicator of the resilience of your
delivery process.

These metrics are valid for:

50

* one project
* one branch

* one promotion level
Additionally, Ontrack distinguishes between:
* single project metrics - where we measure the performance of a promotion level within the

same project

* end-to-end project metrics - where we measure the performance of a promotion level across
several projects, by following the build links. Single project metrics are a special case of end-to-
end project metrics.

8.5.1. Single project delivery metrics

Navigate to any promotion level. Four charts are displayed, one for each of the axes:

* lead time, with mean, 90th percentile & maximum
» frequency, count of promotions over the selected period
* success rate

* time to restore, with mean, 90th percentile & maximum

Lead time to promotion Promotion frequency
@B Mean (- 90th percentile Maximum ERUE ERUR
Duration Count
17 hours 30
14 hours 25
11 hours 20
8hours 15
6 hours 10
167 minutes I 5
O‘o‘b'b D & A N Wk D O P A i I G - IR A I I o‘o%’b O B A N W D o > Q& I S I I ISR
S 9‘96 P N A P oS g P St SO S e,\s? P P S S0P oS g @S’h@“ G o g
2 nS ¥ a® aF aF AT AT W N a8 T T 00 0 0 0f 9 0 o 0 0f o of NI S A N S TSI A A A I, A g A s g 2
AR A AR AR AR AR ARSI ARSI S I .) 0 0 0 ﬁww&mm@w@w@&@gbwmwew@“@m@fgﬂ/wt&
L S S S S S S S S L S S S PSP
Promotion time to restore Promotion success rate
@ Mean () 90th percentile Maximum ERR By
Duration % of success
69 hours 100
56 hours 80
42 hours 60
28 hours 40
14 hours 20
0‘0%%@6‘54 X @ 0 o P NP DL D P P D g o%ﬁ‘b S & 4 X @ 0 o > Q& > O DN @ A o D g
13
I IO :5"”\\ 9\\“{» DTS G G SIGCt p"&,@w SIGICACIGIO ,\"’L\r\ﬁi*‘w R R A T
PP T F ST IS E I PP P FTIFITIFTEFTEFEFEFE S P o
[L S S S S S S S S & [S S L A D A S S S

For each chart, you can:

* visualize the data
» export the chart as an image

* put the chart fullscreen

You can select the interval and the period (cog icon next to the chart title). These settings are valid
for all the charts for all the promotions.

Additionally, you also have two charts a validation stamp level:

31

Validation stamp duration Validation stamp stability

@ Vean 90th percentile Maximum BY X BLX
Duration : % of success
50 minutes : 100

&
&
L

g
09"?/

* how long lasts the validation?

¢ how stable it is?

o For API access to the single project delivery metrics, consider using the exported
End-to-end project delivery metrics.

8.5.2. End-to-end project delivery metrics

o As of now, end-to-end delivery metrics are not available in the UI, only as metrics.
You’ll need to use tools like Grafana or Kibana to show them on charts.

The end-to-end delivery metrics are performance metrics for the promotions across several
projects, following the links between the builds.

For example:

 given a project P depending on a component C which itself depends on a library L

* given a promotion GOLD valid on all these components
We can measure the performance of this promotion by following the links from L to C to P.
The metric axes exposed at the beginning translate into:
* lead time - how long does it take from the moment a L build is created to the moment it is

available in C and P, with all builds are all levels being GOLD?

» frequency - how often does it happen that for each L build, all linked L, C and P builds will all be
GOLD?

* success rate - for each L build, how many of them are GOLD and also their linked C and P
builds?

* time to restore - if a chain L - C - P is not GOLD, how long does it take to restore it to full
GOLD?

All these metrics are exported for each transitive link, branch & promotion. In our previous
example, we’ll have records for the pairs:

* L:L - same as single project delivery metric
* L:C, C:P - one level of dependency

* L:P - two levels of dependency

32

The following metrics are available:

e ontrack_dm_promotion_lead_time - in seconds - for the lead time

 ontrack_dm_promotion_success_rate - percentage (from 0.0 to 1.0) - success rate - can be used for
the frequency by counting the occurences

e ontrack_dm_promotion_ttr - in seconds - for the time to restore
Each metric is associated with the following tags:

* sourceProject, sourceBranch
* targetProject, targetBranch

* promotion

8.6. Auto versioning on promotion

Beside collecting data about the performance of your delivery, Ontrack can in turn use this
information to drive other automation processes.

One of these processes that Ontrack can drive is the "auto promotion on promotion", which allows
the propagation of versions from one repository to others using quality gates based on Ontrack
promotions.

Let’s imagine a project parent which has a dependency on a module expressed through a version
property somewhere in a file.

Ideally, whenever the module has a new version is a given range, we want this version to be used
automatically by the parent.

Manually, we can do this of course:

* we update the version in the parent
» we perform any needed post-processing like a resolution of locks

» we commit and push the change. Voila.
If we put extra automation in the mix, you can define a perfectly valid auto versioning process.

This becomes more complex whenever having a new version of the module is not enough of a
criteria to have it used. This may be a release which has not been qualified yet by extra quality
processes (long running ones maybe).

That’s where the concept of promotion in Ontrack can play a very important rule:

* the module is promoted
* this starts the following process:

* Ontrack creates a pull request for the parent where the version of the module has been changed
to the one being promoted

* any required post processing is performed on this PR

33

* when the PR is ready to be merged (with all its controls), it’s merged automatically
Result:
* versions are propagated automatically only when "promotion gates" are opened

This is valid from one module to a project, and can be easily extended to a full tree of dependent
modules.

The diagram below shows how this works:

m == m

Auto approval

Pipeline registers d aut
Module is promoted the dependency and auto merge
in Ontrack on the module in Ontrack

for a given promotion level

: Creates a PR upgrading Control of the PR
b4 Promotion event b4 the module’s version in the by its pipeline £

for “module” parent’s code
_4 >y :O : :

8.6.1. When not to use auto versioning

While auto versioning is pretty easy to put in place, it should not be used where traditional
dependency management based on locks can be used instead for simple code libraries.

Auto versioning on promotion is however particularly well suited to deal with situations like:
* modular monoliths
* GitOps repositories with fixed versions
8.6.2. General configuration
Auto versioning is not enabled by default. This can be done in the Settings > Auto Versioning.
Three parameters are available:

* Enabled - check to enable auto versioning

» Audit retention - maximum number of seconds to keep non-running audit entries for auto
versioning requests (see Audit logs for more information)

* Audit cleanup - maximum number of seconds to keep audit entries for auto versioning requests.
This time is counted after the retention period for the non-running entries (see Audit logs for
more information)

54

These settings can also be configured as code. For example using:

ontrack:
config:

o settings:

auto-versioning:
enabled: true
auditRetentionDuration: 14d
auditCleanupDuration: 90d

Queue configuration

Ontrack uses queues in RabbitMQ to schedule and process auto versioning events.

By default, one and only one queue, called auto-versioning.default.1 is available. When the load
becomes too important, you can use two mechanisms to scale the auto versioning:

* increase the number of default queues. You can set the ontrack.extension.auto-
versioning.queue.scale configuration property to a higher number than 1

 create dedicated queues for some projects, see below.
Dedicated queues

For a given Ontrack project, you can setup a dedicated queue, which will be used exclusively for
this project (whereas the default queues are shared between all projects).

Use the ontrack.extension.auto-versioning.queue.projects configuration property to defined a
comma-separated list of projects which must have dedicated queues. For example, using
environment variables:

ONTRACK_EXTENSION_AUTO_VERSIONING_QUEUE_PROJECTS=project-one,project-two

8.6.3. Branch configuration

The configuration of a branch for the auto versioning of its dependencies can be done using:

» the GraphQL setAutoVersioningConfig or setAutoVersioningConfigByName mutation
* Jenkins Ontrack pipeline library for Jenkins pipelines
* GitHub for the GitHub ingestion

All these integrations rely on setting up a version of the auto versioning model for a branch which
contains a list of auto versioning source configurations. This can be represented as YAML using:

List of configurations
configurations:
Project to watch

55

- sourceProject: String

Name of the branch to take into account for the dependency. Several branches can
be selected using

a regular expression. If several branches are eligible, only the latest version

can be used, based on inverted order of semantic versioning. Branches which

do not comply with semantic versioning are discarded.

#

See <Targeting a series of branches> for more information.

#

Alternatively, the sourceBranch parameter can be set to "&<expression>" where
‘<expression>' is

used to detect the valid source branch from the source project.

#

See <Branch expressions> below for more information.

sourceBranch: String

Promotion to watch

sourcePromotion: String

Comma-separated list of file to update with the new version

targetPath: String

Regex to use in the target file to identify the line to replace with the new
version.

It must have a capturing group in position 1, which will be replaced by the
actual version.

For example:

#f ‘coreVersion = (.*)°

targetRegex: String?

Can be used instead of the ‘regex' when we consider

property files. In the sample above, the target property can be set to
‘coreVersion'

targetProperty: String?

When ‘property' is used, ‘propertyRegex' can define a regular expression to
extract / update

the actual version from/into the property value. The regular expression must
contain at least

one capturing group, holding the actual version value. This ‘propertyRegex" is
useful for cases

when the version is part of a bigger string, for example, for a Docker image
qualified name.

Example:

When targetProperty = "repository/image:tag"

to target tag, you can use targetPropertyRegex: "repository\/image\:(.*)"

targetPropertyRegex: String

when ‘property' is set, defines how the target file

must be handled. For example, it could be a dependency notation in a NPM
‘package.json' file, or

a property entry in Java properties file for Gradle. For NPM, use ‘npm‘. For
Java properties,

use ‘properties'. When not specified, it defaults to ‘properties'. Other types
are available,

see <Target files types>

targetPropertyType: String?

36

Check if the PR must be approved automatically or not ('true' by default)
autoApproval: Boolean?,
Prefix to use for the upgrade branch in Git, defaults to ‘feature/auto-upgrade-
<project>-<version>-<branch>".
If set manually, the ‘<project>' and ‘<version>‘' tokens can be used to be
replaced respectively
by the dependency project (the ‘project’ above) and the actual version.
#
The ‘<branch>' token is replaced by the MD5 digest of the target branch.
#
Only the ‘<version>' token is required.
#
Starting from 4.7.30 & 4.8.14, the ‘<branch>"' token is not required but will be
added (with the ‘-<branch>' suffix) if not present.
upgradeBranchPattern: String?
Type of post-processing to launch after the version has been updated
postProcessing: String?
Configuration of the post processing
postProcessingConfig: JsonNode?
See "Auto versioning checks"
validationStamp: String?
Auto approval mode
autoApprovalMode: CLIENT | SCM
Build link creation when running the checks. True by default.
buildLinkCreation: Boolean?
Qualifier to use for the build 1links
qualifier: String?
How must the version to use be computed from the source build?
See "Version source" below
versionSource: String?
Additional paths to change.
#f See "Additional paths" below
additionalPaths:
- # Comma-separated list of file to update with the new version
path: String
Regex to use in the target file to identify the line to replace with the new
version.
The first matching group must be the version.")
regex: String?
Optional replacement for the regex, using only a property name
property: String?
Optional regex to use on the property value
propertyRegex: String?
When property is defined, defines the type of property (defaults to Java
properties
file, but could be NPM, etc.)
propertyType: String?
Source of the version for the build. By default, uses the build label is the
source project
is configured so, or the build name itself. This allows the customization of
this behavior.

versionSource: String?

o The auto versioning model for a branch, if set, is shown on the branch page.

Targeting a series of branches

In this scenario, the parent wants to be notified of a promotion on a series of branches, and Ontrack
triggers the upgrade only if the promotion has occurred on the latest branch.

Setup:
* set the branch parameter to a regular expression on the Git branch, for example: release\/.\..*
How does it work?

* when a promotion occurs on the desired level, Ontrack gets the list of branches for the
dependency, orders them by descending version, filter them using the regular version, and
triggers an upgrade only if the promoted branch is the first in this list (latest in terms of version)

Pro’s:

* simple

« allows auto upgrades fairly easily
Con’s:
 the dependency must really take care of a strong semantic versioning

Branch expressions

The sourceBranch parameter can be set to &expression> where <expression> is an expression used to
detect the source branch on the source project for a branch eligible for auto versioning.

Supported values are:

®ex

By using:
sourceBranch: "®ex:<regex>"

this is equivalent to the default behaviour:
sourceBranch: "<regex>"

&same

The source branch must have the exact same name as the target branch.

38

Example: if you have a branch release-1.24 on a parent project P and you want to get updates from
a dependency project only for the same branch, release-1.24, you can use:

sourceBranch: "&same"

&most-recent

Two branches (release/1.1 & release/1.2) are available for a project which is dependency of an
auto versioned parent project with the following default branch source:

branch: 'release\/1\..*'

In this scenario, no promotion has been granted yet in release 1.2 of the dependency.

When 1.1 is promoted, Ontrack identifies a branch on the parent project to be a potential candidate
for auto versioning.

This branch is configured to accept only the latest release/1.* branch, which is - now - the
release/1.2.

Therefore, a 1.1 promotion is no longer eligible as soon as the 1.2 branch was created (and
registered in Ontrack).

What exactly do we want to achieve? In this scenario, we always want the version promoted in 1.1
as long as there is none in 1.2. Let’s imagine we promote a 1.1 while 1.2 was already promoted,
what then? How do we protect ourselves?

The idea is to accept a promotion as long as there is no such a promotion in later branches.

* a 1.1 is promoted and there is no such promotion in more recent branches (1.2, etc.) - we accept
it

* a 1.1 is promoted and there is already such a promotion in a more recent branch (1.2 for
example) - we reject it

To implement this strategy, we have to use:

branch: '&most-recent:release\/1\..*'

&Gsame-release

On the same model as the "&same" sourceBranch parameter, there is the possibility to get a "&same-
release" branch source.

This is to be used in cases where the dependency and its parent follow the same branch policy at
release/ branch level, but only for a limited number of levels.

For example, a parent has release branches like release/1.24.10, with a dependency using on
release/1.24.15. We want release/1.x.y to always depend on the latest release/1.x.z branch (using 1.

39

as a common prefix).

One way to do this is to use: sourceBranch: "release/1.24.*" but this would force you to always
update the source branch parameter for every branch:

e release/1.24.* in release/1.24.x branch
* release/1.25.* in release/1.25.X branch

e etc.

A better way is to use, in this scenario:
sourceBranch: "&Gsame-release:2"

This means:

 if you're on a release/x.y.z branch, use release/x.y.* for the latest branch

 for any other branch (main) for example, we use the same branch

o Note that :2 means: take the first two numbers of the version of the release
branch. By default, it’d be :1 and can be omitted: sourceBranch: "&same-release".

Version source

By default, the version to use in the target project is computed directly from the build which has
been promoted.

The default behavior is:

* if the source project is configured to use the labels for the builds ("Build name display"
property), the label (or release, or version) of the build is used. If this label is not present, the
auto versioning request will be rejected

« if the source project is not configured, the build name is taken as the version
This version computation can be adapted using the versionSource configuration parameter.
The different options for this parameter are:

 default - uses the default behavior described above
* name - uses the name of the build, regardless of the source project configuration

* labelOnly - uses the label attached to the build, regardless of the source project configuration. If
there is no label, the auto versioning request is rejected

* metalnfo/<category>/<name> or metalnfo/<name> - the version is the value of a meta information
item of the request category (optional) or name. If so such meta information is found, the auto
versioning request is rejected.

60

Additional paths

The additionalPaths configuration property allows the specification of additional paths to update
instead of just the main one.

o This can somehow be considered as a form of post-processing but without the
need to call an external service.
Example:
configurations:
-# ..

targetPath: "gradle.properties”
targetProperty: "one-version"
additionalPaths:
- path: manifest.toml
property: global.oneVersion
propertyType: toml
versionSource: metalnfo/rpmVersion

In this example, we want the auto-versioning to:

» update the one-version property of the gradle.properties file using the version of the build
having been promoted

» update the global.oneVersion property of the manifest.toml file, but this time using the
rpmVersion meta-information of the build having been promoted

Both changes will be part of the same PR.

Post-processing is still possible and would be run after all changes have been applied first (default
path & additional paths).

Target files types

Auto versioning, in the end, works by updating a target file, designed in the configuration by the
path property. Typically, it'll be a gradle.properties or a package.json file but it could be anything
else.

A regular expression (regex parameter) can be used to identify the change. This expression is used
to 1) identify the current version 2) replace the current version by a new one. In order for this to
work, the regular expression must:

* match the whole target line in the target file

* have a capturing group in position 1 identifying the version to read or replace

It is also possible to use a higher level of file type, by specifying a propertyName and optionally a
propertyType.

The propertyName designates a property in the target file and the propertyType designates the type

61

of the file to replace. Two types are currently supported:

» properties (default) - Java properties file, typically used for a gradle.properties file
* npm - NPM package file, typically used for package. json

* maven - Maven POM file

e yaml - YAML file, see YAML files

* toml - TOML file, see [auto-versioning-config-type-toml]

See the examples section for their usage.

Maven POM file

For the maven type, the file to transform is a Maven pom.xml file. The property is required to be one of
the <properties> elements of the file.

For example, given the following POM:

<project>
<properties>
<dep.version>1.10</dep.version>
<ontrack.version>4.4.10</ontrack.version>
</properties>
</project>

we can refer to the ontrack.version using the following auto versioning configuration:

configurations:
B ...
targetPath: pom.xml
propertyType: maven
property: ontrack.version

YAML files

When propertyType is set to yaml, property is expected to define a path inside the YAML file.
This path is expressed using the Spring Expression Language.

For example, given the following YAML file (a deployment fragment in Kubernetes):

62

https://docs.spring.io/spring/docs/4.3.25.RELEASE/spring-framework-reference/htmlsingle/#expressions

apiVersion: apps/vi
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: component
image: repo/component:0.17.1

In order to get to the repo/component:0.1.1 value, the path to set will be:

#root.Akind == 'Deployment' and metadata.name == 'my-
app'].spec.template.spec.containers.”[name == 'component'].image

See the Spring Expression Language reference for a complete reference but this expression already
illustrates some key points:

f#iroot refers to the "root object”, used to evaluate the expression, in our case, the list of YAML
"documents", separated by ---

AM[<filter>] is an operator for a list, evaluating the given filter for each element until one
element is found. Only the found element is returned.

 .name returns the value of the name property on an object

* literal strings are using single quotes, for example: 'Deployment’

If property is set to the expression mentioned above, the value being returned will be
repo/component:0.1.1. However, we want to use "0.1.1 only.

For this purpose, you need to specify also the propertyRegex and set it, for this example to:

Arepo\/component: (.*)$

TOML files

When propertyType is set to yaml, property is expected to define a path inside the YAML file.

For example, given the following TOML file:

[images]
myVersion = "2.0.0"

To update the myVersion property in the images table, one can set the auto versioning property to
images.myVersion.

63

https://docs.spring.io/spring/docs/4.3.25.RELEASE/spring-framework-reference/htmlsingle/#expressions

The support of TOML in the Ontrack auto versioning uses the 4koma library and
this comes with some caveats:

* comments are not supported and will be stripped from the file after the auto
versioning request has been processed

A » only basic expressions like a.b.c are supported. Arrays and other structures
are not supported.

Request for help: if you know of a better TOML Java/Kotlin library which would
support comments, updates of the TOML structure, more complex queries, please
let me know.

Integrations
Jenkins pipeline

By using the Jenkins Ontrack pipeline library, you can setup the auto versioning configuration for a
branch.

For example:

ontrackCliAutoVersioning {
branch "main"
yaml "auto-versioning.yml"

where auto-versioning.yml is a file in the repository containing for example:

dependencies:
- project: my-library

branch: release-1.3"

promotion: IRON

path: gradle.properties

property: my-version

postProcessing: jenkins

postProcessingConfig:
dockerImage : openjdk:8
dockerCommand: ./gradlew clean

GitHub Actions

TBD

ontrack-github-ingestion-auto-versioning GitHub action which sets up auto versioning for the
GitHub ingestion

64

https://github.com/valderman/4koma
https://github.com/nemerosa/ontrack-jenkins-cli-pipeline
https://github.com/nemerosa/ontrack-github-ingestion-auto-versioning

Examples

Gradle update for last release

To automatically update the dependencyVersion in gradle.properties to the latest version 1.* of the
project dependency when it is promoted to GOLD:

* project: dependency

* branch: release/1\..*

* promotion: GOLD

» path: gradle.properties

» propertyName: dependencyVersion

» propertyType: properties (or nothing, it’s a default)

* postProcessing:

* postProcessingConfig:

o dockerImage: openjdk/8

o dockerCommand: ./gradlew resolveAndLockAll --write-locks

NPM update for last release

To automatically update the @test/module in package.json to the latest version 1.* of the project
dependency when it is promoted to GOLD:

* project: dependency

* branch: release/1\..*

* promotion: GOLD

* path: package.json

» propertyName: @test/module

* propertyType: npm

* postProcessing:

* postProcessingConfig:

o dockerImage: node:jessie

o dockerCommand: npm -1

8.6.4. Post processing

In some cases, it’s not enough to have only a version being updated into one file. Some additional
post-processing may be needed.

For example, if using Gradle or NPM dependency locks, after the version is updated, you’d need to
resolve and write the new dependency locks.

The Auto Versioning feature allows you to configure this post-processing.

65

In the branch configuration, you can set two properties for each source configuration:

* postProcessing - ID of the post-processing mechanism

* postProcessingConfig - configuration for the post-processing mechanism

As of now, only two post-processing mechanisms are supported. See the sections below for their
respective configurations.

GitHub post-processing

You can delegate the post-processing to a GitHub workflow.

There is a global configuration and there are a specific configuration at branch level (in the
postProcessingConfig property).

For the global configuration, you can go to Settings > GitHub Auto Versioning Post Processing and
define the following attributes:

* Configuration - Default GitHub configuration to use for the connection

* Repository - Default repository (like owner/repository) containing the workflow to run

» Workflow - Name of the workflow containing the post-processing (like post-processing.yml)

* Branch - Branch to launch for the workflow

Retries - The amount of times we check for successful scheduling and completion of the post-
processing job

* Retry interval - The time (in seconds) between two checks for successful scheduling and
completion of the post-processing job

The postProcessingConfig property at branch level must contain the following parameters:

* dockerImage - This image defines the environment for the upgrade command to run in

¢ dockerCommand - Command to run in the Docker container

» commitMessage - Commit message to use to commit and push the result of the post-processing

* config- GitHub configuration to use for the connection (optional, using defaults if not specified)

» workflow - If defined, name of the workflow in this repository containing the post-processing
(like post-processing.yml)

 version - the version which is upgraded to

The workflow branch configuration property can be used to set the post-processing workflow to one
in the very branch targeted by the auto versioning process. This would override the global settings.

Example of a simple configuration relying on the global settings:

66

postProcessing: github

postProcessingConfig:
dockerImage: openjdk:11
dockerCommand: ./gradlew dependencies --write-locks
commitMessage: "Resolving the dependency locks"

The code below shows an example of a workflow suitable for post-processing:
post-processing.yml
name: post-processing

on:
Manual trigger only
workflow_dispatch:
inputs:
id:
description: "Unique client ID"
required: true
type: string
repository:
description: "Repository to process, like 'nemerosa/ontrack"'"
required: true
type: string
upgrade_branch:
description: "Branch containing the changes to process"
required: true
type: string
docker_image:
description: "This image defines the environment for the upgrade command to
run in"
required: true
type: string
docker_command:
description: "Command to run in the Docker container"
required: true
type: string
commit_message:
description: "Commit message to use to commit and push the result of the post
processing”
required: true
type: string

jobs:
processing:
runs-on: ubuntu-latest
container:
image: ${{ inputs.docker_image }}
steps:
- name: logging

67

run: |
echo id = ${{ inputs.id }} > inputs.properties
echo repository = ${{ inputs.repository }} >> inputs.properties
echo upgrade_branch = ${{ inputs.upgrade_branch }} >> inputs.properties
echo docker_image = ${{ inputs.docker_image }} >> inputs.properties
echo docker_command = ${{ inputs.docker_command }} >> inputs.properties
echo commit_message = ${{ inputs.commit_message }} >> inputs.properties
- name: artifact
uses: actions/upload-artifact@v3
with:
name: inputs-${{ inputs.id }}.properties
path: inputs.properties
if-no-files-found: error
- name: checkout
uses: actions/checkout@v3
with:
repository: ${{ inputs.repository }}
ref: ${{ inputs.upgrade_branch }}
token: ${{ secrets.ONTRACK_AUTO_VERSIONING_POST_PROCESSING }}
- name: processing
run: ${{ inputs.docker_command }}
- name: publication
run: |
git config --local user.email "<some email>"
git config --local user.name "<some name>"
git add --all
git conmit -m "${{ inputs.commit_message }}"
git push origin "${{ inputs.upgrade_branch }}"

 all mentioned inputs are required by Ontrack

* the id input and its output into a local file artifact is required by Ontrack to
o follow up on the workflow process

* commit & pushing the changed files is required for the post processing to be
considered complete

The rest of the workflow can be adapted at will.

Jenkins post-processing

You can delegate the post-processing to a Jenkins job.

There is a global configuration and there are a specific configuration at branch level (in the
postProcessingConfig property).

For the global configuration, you can go to Settings > Jenkins Auto Versioning Processing and define
the following attributes:

* Configuration - default Jenkins configuration to use for the connection

* Job - default path to the job to launch for the post-processing, relative to the Jenkins root URL

68

(note that /job/ separators can be omitted)

* Retries - the amount of times we check for successful scheduling and completion of the post-
processing job

* Retry interval - the time (in seconds) between two checks for successful scheduling and
completion of the post-processing job

The postProcessingConfig property at branch level must contain the following parameters:

Parameter Default value Description

dockerImage Required Docker image defining the
environment

dockerCommand Required Command to run in the working
copy inside the Docker
container

commitMessage Required Commit message for the post

processed files. If not defined, a
default message will be
provided

config Optional Jenkins configuration to use for
the connection (optional, using
defaults if not specified)

job Optional Path to the job to launch for the
post processing (optional, using
defaults if not specified)

credentials Optional List of credentials to inject in
the command (see below)

Example of such a configuration:

postProcessing: jenkins

postProcessingConfig:
dockerImage: openjdk:11
dockerCommand: ./gradlew dependencies --write-locks
commitMessage: "Resolving the dependency locks"

The Jenkins job must accept the following parameters:

Parameter Description
REPOSITORY_URI Git URI of the repository to upgrade
DOCKER_IMAGE This image defines the environment for the

upgrade command to run in.

DOCKER_COMMAND Command to perform the upgrade.

69

Parameter Description

COMMIT_MESSAGE Commit message to use to commit and push the
upgrade.

UPGRADE_BRANCH Branch containing the code to upgrade.

CREDENTIALS Pipe (|) separated list of credential entries to

pass to the command.

VERSION The version which is upgraded to

The Jenkins job is responsible to:

* running a Docker container based on the DOCKER_IMAGE image

* inject any credentials defined by CREDENTIALS parameter

checkout the UPGRADE_BRANCH branch of the repository at REPOSITORY_URI inside the container

run the DOCKER_COMMAND command inside the container
* commit and push any change using the COMMIT_MESSAGE message to the UPGRADE_BRANCH branch

8.6.5. Pull requests

After a branch is created to hold the new version, after this branch has been optionally post-
processed, Ontrack will create a pull request from this branch to the initial target branch.

The autoApproval branch configuration property (set to true by default) is used by Ontrack to check
if created pull requests must managed at all.

If set to false, Ontrack will just create a pull request and stop here.

If set to true, the fate of the pull request depends on the auto approval mode which has been set in
the branch configuration:

Auto approval mode Description Pro’s Con’s
CLIENT This is the default Full visibility on the PR This creates additional
behaviour. Ontrack lifecycle within load on Ontrack

takes the ownership of Ontrack
the pull request
lifecycle:

* PR is approved
automatically

e Ontrack waits for
the PR to become
mergeable

* Ontrack merges the
PR

70

Auto approval mode Description Pro’s Con’s

SCH Ontrack relies on the Lessload on Ontrack Less visibility on the PR
SCM (GitHub for since the PR lifecycle is lifecycle from Ontrack
example) for the fully managed by the
lifecycle of the pull SCM
request, in a "fire and
forget" mode:

* PR is approved
automatically

* PR is set for auto
merge

* In the background,
the PR will be
merged
automatically once
all the conditions

are met, but
Ontrack does not
follow that up

General configuration

Both modes, CLIENT and SCM, need the SCM configuration used by Ontrack to have additional
attributes.

General configuration for GitHub

The GitHub configuration used by the Ontrack project must have its autoMergeToken attribute set to a
GitHub Personal Access Token with the following permissions:

* repo

and the corresponding user must have at least the Triage role on the target repositories.

o This autoMergeToken must be linked to a user which is not the user used by the
GitHub configuration. It’s because a user cannot approve their own pull requests.

CLIENT mode

No specific configuration is needed for the CLIENT mode.

SCM mode

There is some configuration to be done at SCM level.

71

SCM mode for GitHub

The target repository, the one defining the project being auto-versioned, must have the following
settings:

» the Allow auto-merge feature must be enabled in the repository

8.6.6. Auto versioning checks

While auto versioning is configured to automatically upgrade branches upon the promotion of
some other projects, it’s also possible to use this very configuration to check if a given build is up-to-
date or not with the latest dependencies.

By calling the POST /extension/auto-versioning/build/{buildId}/check end point, where buildId is
the ID of the build to check, you create a validation run on this build:

* it’ll be PASSED if the dependencies are up-to-date

* FAILED otherwise
The name of the validation stamp is defined by the validationStamp parameter in the configuration
of the branch:

¢ if defined, will use this name

* if set to auto, the validation stamp name will be auto-versioning-<project>, with <project> being
the name of the source project

 if not set, no validation is created

You should seldom call this endpoint directly and rather use one of the existing
integrations:

o * GitHub ingestion

* the Jenkins pipeline library

8.6.7. Audit logs

All auto versioning processes and all their statuses are recorded in an audit log, which can be
accessed using dedicated pages (and the GraphQL API).

The auto versioning audit can be accessed:

» from the Auto versioning audit user menu, for all projects and branches

* from the Tools > Auto versioning audit (target) from a project page when the project is
considered a target of the auto versioning

* from the Tools > Auto versioning audit (source) from a project page when the project is
considered a source of the auto versioning

» from the Tools > Auto versioning audit from a branch page when the branch is targeted by the
auto versioning

72

All these pages are similar and show:

* a form to filter the audit log entries

* a paginated list of audit log entries
Each log entry contains the following information:

* target project and branch (only available in global & project views)
* source project

* version being updated

* post-processing ID if any

* auto approval mode if any

* running flag - is the auto versioning process still running?
 current state of the auto versioning process

* link to the PR if any

» timestamp of the latest state

 duration of the process until the latest state

* a button to show more details about the process

When the details are shown, the following information is available:
* the history of the states of the process
* a JSON representation of the auto versioning order

Audit cleanup

To avoid accumulating audit log entries forever, a cleanup job is run every day to remove obsolete
entries. The behaviour of the cleanup is controlled through the global settings.

Audit metrics

The following operational metrics is exposed as a gauge by the Ontrack auto versioning feature:

* ontrack_extension_auto_versioning_audit_state
* tags: state auto versioning state

 count of auto versioning entries having this state

8.6.8. Notifications

The auto versioning feature integrates with the Notifications framework by emitting several events
you can subscribe to:

* auto-versioning-success - whenever an auto versioning process completes

* auto-versioning-error - whenever an auto versioning process finishes with an error

73

* auto-versioning-pr-merge-timeout-error - whenever an auto versioning process cannot merge a
pull request because of a timeout on its merge condition (only when autoApprovalMode is set to
CLIENT - see Pull requests)

8.6.9. Cancellations

By default, when auto versioning requests pile up for a given source and target, all the
intermediary processing requests are cancelled.

For example, given the following scenario, for a given source project and a given target branch:

(1) auto versioning to version 1.0.1

* auto versioning to version 1.0.2 while (1) is still processed
* auto versioning to version 1.0.3 while (1) is still processed
* auto versioning to version 1.0.4 while (1) is finished

In this scenario, the processing of 1.0.1 and 1.0.4 will have been processed and completed while
1.0.2 and 1.0.3 would have been cancelled.

o The auto cancellation can be disabled by setting the ontrack.extension.auto-
versioning.queue.cancelling configuration property to false.

8.6.10. Metrics

The following operational metrics are exposed by Ontrack, which allow to track the load of the auto
versioning processes:

Metric Tags Description Type
ontrack_extension_auto ¢ routingKey - Number of processing Count
_versioning_queue_pro RabbitMQ routing orders queued
duced_count key wused for the

processing

* sourceProject -
source project

* targetProject -
target project

* targetBranch -
target branch

74

Metric

ontrack _extension_auto
_versioning_queue_con
sumed_count

ontrack _extension_auto
_versioning_processing
_completed_count

ontrack_extension_auto None

_versioning_processing
_error_count

ontrack _extension_auto
_versioning_processing
_time

Tags Description

queue - RabbitMQ Number of processing
queue used for the orders queued
processing

sourceProject -
source project

targetProject -
target project

targetBranch -
target branch

outcome - Result of Number of processing
the processing, one orders queued

of CREATED,
SAME_VERSION or
NO_CONFIG

sourceProject -

source project

targetProject
target project

targetBranch -
target branch

Number of processing
orders stopped because
of an error

queue - RabbitMQ Time it took to process
queue used for the an order
processing

sourceProject -
source project

targetProject -
target project

targetBranch -
target branch

Type

Count

Count

Count

Timer

75

Metric

ontrack _extension_auto
_versioning_post_proce
ssing_started_count

ontrack _extension_auto
_versioning_post_proce
ssing_success_count

ontrack extension_auto
_versioning_post_proce
ssing_error_count

76

Tags

* postProcessing - ID

of the post-
processor (github,

o)

sourceProject -
source project

targetProject -
target project

targetBranch -
target branch

postProcessing - ID
of the post-
processor (github,
)

sourceProject -
source project

targetProject -
target project

targetBranch -
target branch

postProcessing - ID
of the post-
processor (github,

o)

sourceProject -
source project

targetProject -
target project

targetBranch -
target branch

Description Type

Number of post- Count
processing having

started

Number of post- Count

processing having
completed with success

Number of post- Count
processing having

completed with an

error

Metric Tags Description Type

ontrack_extension_auto e postProcessing - ID Time it took to Timer
_versioning_post_proce of the post- complete the post-
ssing_time processor (github, processing

)

* sourceProject -
source project

* targetProject -
target project

* targetBranch -
target branch

8.7. Project indicators

Project indicators are set at project level to hold values about different types of information.

(= Services
Delivery and Build Principles Helm Chart Principles Service Principles
34/140 indicators are rated. 0 20/250 indicators are rated. 33/120 indicators are rated.
4 indicators are rated @ 8 indicators are rated @ 5 indicators are rated @

Those types of information are grouped into categories and can have a specific value type, like a
boolean (yes/no), a percentage, a numeric value, etc. Types can be entered manually, imported or
computed.

Every of those indicator values have a level of compliance which computed as a percentage (from
0% - very bad - to 100% - very good) according to the configuration of the type. The compliance is
also associated with a rating, from F (very bad) to A (very good).

The indicator values can be entered manually at project level or be computed.

Projects can be grouped together in portfolios which are also associated with a subset of categories.
And a global view of all portfolios is associated with a specific subset of categories.

Finally, the history of indicators is retained by Ontrack and can be used to compute trends at the
different levels (at project level, at portfolio level or globally).

Indicators functions can be accessed either by:
* the Indicators menu for the managers, leading to a page listing all the different options

* the Indicator portfolios menu for the non managers, leading the list of existing portfolios

8.7.1. Indicators authorization model

Having access to a project grants automatically access to viewing the associated indicators.

77

However, managing indicators, types & portfolios is granted according to the following matrix:

Function Administrat Global Global Project Project

or indicator indicator manager/ow indicator
manager portfolio ner manager
manager

Global Yes Yes No No No

indicators

Type and Yes Yes No No No

category

management

(D

View Yes Yes No No No

management

Portfolio Yes Yes Yes No No

management

Indicator Yes Yes No Yes Yes

edition (2)

(1) Imported types & categories are not open to edition. (2) Computed indicators are not open to
manual edition.

8.7.2. Indicator types management

Categories & types can be managed manually by an authorized using the following user menus:

* Indicators > Categories

* Indicators > Types
A category must have the following attributes:

* id - unique ID for this category among all the categories

* name - display name for this category
A type must have the following attributes:

* id - unique ID for this type among all the type

* name - display name for this type

* link - optional URL for more information about this type

* value type - type of indicator value this type. For example, a percentage or a boolean

* value config - configuration for the value type, used to compute the indicator compliance and

rating

Categories and types can also be imported orcomputed. In such a case, both the category and the
type are associated with a source and they cannot be edited.

78

Value types

The following value types are available in Ontrack:

Type
Yes/No

Percentage

Description

Value which can be
either Yes (true) or No
(false)

Integer value between
0 and 100 inclusive

Configuration

required - flag to
indicate if the indicator
must be Yes in order for
the project to be fully
compliant. If required is
false, the rating willbe
A is the value is set to
Yes and D if the value is
No. For a_No_ value on
a required indicator,
the rating would be F.

threshold - pivot value
(see example)

higherIsBetter -a
higher percentage in
the value of the
indicator indicates a
better quality (see
example)

Example

"Project should be build
with Gradle" - because
of the "should", the
indicator_required_
value is set to false.

"Test coverage" is
expressed as a
percentage and
higherIsBetter will be
set to true. If threshold
is set to 80:

* any value >= 80% has
a rating of A * for
values below 80%, the
rating is computed
proportionally, with 0%
having a rating of F

"Duplicated code" can
also be expressed as a
percentage, but this
time with
higherIsBetter being
set to false. If threshold
is set to 10:

* any value < 10% has
a rating of A * for
values above 10%, the
rating is computed
proportionally, with
100% having a rating of
F

79

Type Description Configuration Example

Number Integer value >=0 min - pivot value (see "Number of blocking
example) issues" is expressed as
a number with
max - secondary pivot higherIsBetter being
value (see example) set to false. If minis O
and max is 10:
higherIsBetter -a

higher value of the * any value set to 0 has
indicator indicates a arating of A * any value
better quality (see >=10 has a rating of F *
example) for any value in
between, the rating is
computed
proportionally

A "Number of tests"
could be expressed as a
number with
higherIsBetter being
set to true. If min is 100
and max is 1000:

*any value < 100 has a
rating of F * any value
>=1000 has a rating of
A * for any value in
between, the rating is
computed
proportionally

e Additional value types can be created by registering an extensionimplementing
the IndicatorValueType interface. See existing value types for examples.

8.7.3. Indicator edition

An authorized user can edit the indicator for a project by going to the Tools menu and select Project
indicators:

Force Git project sync

Project indicators

All available types are displayed, grouped by categories, and each indicator value is shown together

80

with its value, its rating:

Delivery and Build Principles «— 'ndicator category

Type Value Status Trend Comment Signature
Edit value
MUST Use the Inner Source model on Bitbucket repositories s Delete value
MUST enable Gheckstyle for Java code formatting Yes o @ May 29, 2020 6:24 M
MUST follow Docker artifact naming conventions Yes o Comment about @ May 29, 2020 6:24 A
Indicator type & link to description current value
MUST follow Maven artifact naming conventions e Yes) Current rating @ May 26, 2020 624 At
MUST follow minimal set of pipeline prerequisites Currentvalue g\, [Missing security scan - see PRJ-112 Gamion coraboeut @ Jun 8, 2020 9:49 AM
MUST rely on our internal Maven artifact repository Linkto bistory Trend slnce last value Y
MUST specify a README.md and CONTRIBUTING.md Who entered the value
and when
MUST use Gradle for builds Yes (1) 2 Was @ 12 days ago @ May 27, 2020 1:55 Pt
SHOULD only publish actual deliverables Yes (1) A Was @ 12 days ago @ May 27, 2020 1:56 Mt

If the indicator has a previous value, its previous rating is displayed.

If the indicator is open to edition, the user can click on the pencil icon to edit the value according to
the value type. Upon validation, a new indicator value is stored ; the old value is kept for history
and trend computation.

Comments can be associated with an indicator values. Links & issue references will be rendered as
links.

An authorized user can also delete the indicator ; this actually register a new null value for the
indicator. The historical values are kept.

The history of an indicator can be accessed by clicking on the History icon:

SHOULD only publish actual deliverables (Delivery and Build Principles)

Value Status Comment Signature

Yes o damien.coraboeuf @ May 27, 2020 1:56 PM
No o damien.coraboeuf @ May 27, 2020 1:56 PM
Yes (A @ May 27, 2020 9:27 AM

The list of portfolios the project belongs to is displayed at the top of the indicator list:

Portfolios: . CI/CD Ecosystem Services *—

Delivery and Build Principles
Type
8.7.4. Indicator portfolios

Portfolios are available in the Indicator portfolios user menu (or Indicators > Portfolios for the
managers) and the associated page displays the list of already created portfolios.

In this list, each portfolio is associated with the list of categories for the current view and each of
these categories is associated with the average rating for all the projects and all the types of this
category.

81

(= Services

Delivery and Build Principles Helm Chart Principles Service Principles
34/140 indicators are rated. 20/250 indicators are rated. 33/120 indicators are rated.
4 indicators are rated @ 8 indicators are rated @ 5 indicators are rated @

Only indicators having an actual value are used to compute the average rating. The
o indicators which are not set are not used for the computation and the ratio

"number of indicators being set" to the"number of total indicators" is also

displayed. This gives an idea about the trust we can have in this average rating.

o The minimum ratings are also mentioned if they diverge from the average.

The trend period allows to display the average value from the past, and to compare it with the
current value.

Management of portfolios

Authorized users can create, edit and delete portfolios.

Creating a portfolio is done using the Create portfolio command:

| GEEIEED.

The portfolio creation dialog requires:

* an ID - must be unique amont all the portfolios and will be used as an identifier. It must
therefore comply with the following regular expression: [a-z0-9: -]+ (lowercase letters, digits, :
colon or - dashes). The ID cannot be modified later on.

* a display name

New portfolio

Name

D Cancel

Once created, the portfolio appears on the portfolio overview and can be edited or deleted using
the appropriate icons:

82

Portfolio Associated projects

view
\ l v Edition
= Services <« Deletion

Delivery and Build Principles Helm Chart Principles Service Principles

22/112 indicators are rated. 20/200 indicators are rated. 21/96 indicators are rated.

2 indicators are rated @ 8 indicators are rated @ 1 indicator is rated @

the portfolio name is actually a link going to the detailed portfolio view

 the arrow icon goes to the home page and displays only the projects associated to this portfolio

the edition icon goes to the portfolio edition page

the deletion icon displays a warning and allows the user to delete the portfolio.

o The deletion of a portfolio does not delete any indicator in any project.

Portfolio page
By clicking on the portfolio name in the portfolio overview, you get to a page displaying:
* the list of projects associated with this portfolio

* the list of categories associated with this portfolio

* the average indicator rating for project and for each category

l## Trend period No trend j

authentication-service
configuration-service

gateway

job-service

platform-core

reporting
search-service

ui-services

Delivery and Build Principles
22/112 indicators are rated.

2 indicators are rated @

1/14 indicator is rated.

0/14 indicator is rated.

8/14 indicators are rated.

1 indicator is rated @

0/14 indicator is rated.

13/14 indicators are rated.

1 indicator is rated @

0/14 indicator is rated.

0/14 indicator is rated.

0/14 indicator is rated.

0 Helm Chart Principles

20/200 indicators are rated.

8 indicators are rated @

0/25 indicator is rated.
0/25 indicator is rated.

0/25 indicator is rated.

0/25 indicator is rated.

0 20/25 indicators are rated.

8 indicators are rated @

0/25 indicator is rated.
0/25 indicator is rated.

0/25 indicator is rated.

Service Principles
21/96 indicators are rated.

1 indicator is rated @

0/12 indicator is rated.

0/12 indicator is rated.

9/12 indicators are rated.

0/12 indicator is rated.

12/12 indicators are rated.

1 indicator is rated @

0/12 indicator is rated

0/12 indicator is rated.

0/12 indicator is rated.

o As for the portfolio overview, the average rating is computed only using the
indicators which are actually set, and the ratio filled vs. total is displayed.

0 You can also select a view to change the selected categories.

The trend period selector allows you to check the past average values and the associated trends.
Clicking on a project name goes to the project indicators page.

Clicking on a category name goes to a page displaying a detailed view of indicators for all the types
in this category and for all the projects of this portfolio:

83

2
s 8
H 3
3 a
2 e @
i g = S H
g) o = 3 s
: ; g : : g : i
8 8 8 3 H 8
: : g H g i H g
Type 8 8 e 8 El @ 8 &
MUST Use the Inner Source model on Bitbucket repositories o
MUST enable Checkstyle for Java code formatting o o
MUST follow Docker artifact naming conventions. o o
MUST follow Maven artifact naming conventions o G
MUST follow minimal set of pipeline prerequisites G o
MUST rely on our internal Maven artifact repository o
MUST specify a README.md and CONTRIBUTING.md o
MUST use Gradle for builds o o

In this view, clicking on the icon right to the type name will bring up a page displaying the indicator
values for this type for all the projects of this portfolio:

Project Value Status Trend Comment Signature

authentication-service

configuration-service

gateway Yes (4] @May 29, 2020 6:24 AM
job-service

platform-core No (] Issue Created: CARB-4336 @ May 27, 2020 1:41 PM
reporting

search-service

ui-services

According to your rights, you can edit and delete indicator values from this page.

Portfolio edition
The portfolio edition page allows you to:
* edit the portfolio display name (not the ID)

* set a label to select the associated projects

* select the categories associated with this portfolio

ID: services <+ ID (not editable)
Name edition -

A)

Services

Label selector . type:service ~ e Label selection

Delivery and Build Principles »
Helm Chart Principles »

Selection of categories
Security Principles »)
Service Principles »

SonarQube metrics »

The label allows a portfolio to be associated to all projects which have this label. See [projects-
labels] for more information on how to manage labels.

o "Global indicator portfolio managers" and"Global indicator managers" can
associate existing labels to projects but cannot create new labels.

84

8.7.5. Indicator views

Indicator views group categories together under a common name. These views can be used in the
following pages to restrict the categories which are shown:

 overview of all portfolios

* portfolio page

* project indicators

The list of views can be edited by administrators and global indicator managers, using the
Indicators > Views menu.

In the view management page, the user can:

* create new views
« edit the list of categories for an existing view

* delete existing views

8.7.6. Importing categories and types

While indicator categories and types can be entered manually, it is also possible to import lists of
categories and their associated types.

In a company, a number of "principles" have been created for projects to comply with. They
have been written as Asciidoc and are published as a browsable web site. The associated
principles, grouped in pages, have been imported as types (and categories) in Ontrack, by
parsing the Asciidoc.

To import categories & types in Ontrack, you need a user allowed to manage types and you can use
the POST /extension/indicators/imports end point, passing a JSON as payload.

For example, with Curl:
curl --user <user> \
-H "Content-Type: application/json" \
-X POST \

http://ontrack/extension/indicators/imports \
--data @payload.json

where:

85

payload.json

{
"source": "principles",
"categories": [
{
"id": "service-principles",
"name": "Service Principles”,
"types": [
{
"id": "java-spring-boot",
"name": "SHOULD Use Java & spring boot stack",
"required": false,
"link": "https://example.com/architecture-
principles/latest/service_principles.html#java-spring-boot"
}
1
}
]
}

The source is an ID identifying the nature of this list.
Each category must have an id (unique in Ontrack) and a display name.
Each type must have:

* an id (unique in Ontrack)
* a display name
* arequired flag - as of now, only "Yes/No" value types are supported

» an optional 1ink to some external documentation
Upon import:

* new existing & types are created
* existing categories & types are updated and associated indicators are left untouched

* removed categories & types are marked as deprecated, and associated indicators are kept

Instead of marking obsolete categories & types as deprecated, those can be deleted
o using the ontrack.config.extension.indicators.importing.deleting =
trueconfiguration property but this is not recommended.

o Imported categories & types cannot be edited.

8.7.7. Exporting categories and types

The list of indicators for a category or a type can be visualized and exported as CSV for all projects

86

or for a selection of projects.

In the list of categories or types, click on the eye icon to access a report about the indicators for this
category or type:

service-principles Service Principles Import: principles 12 o

The indicator category report page displays a matrix of all indicator values for the selected projects
and the types which are in this category. For the indicator type page, it’s the same layout, but only
one column for the selected type.

By default, only projects having at least one indicator filled in for the selected types are displayed.
You can unselect the Only projects with values to display all projects.

In both the category and type report page, you can select the CSV Export link to download this list
as a CSV file.

8.7.8. Computing indicators

It is possible to define some types whose value is not entered manually but is computed by Ontrack
itself.

You do so by registering an extension which implements the IndicatorComputer interface, or the
AbstractBranchIndicatorComputer class when the value must be computed from the "main branch" of
a project.

See the documentation of those two types for more information.

The SonarQubeIndicatorComputer extension is an example of such an implementation.

o Computed categories & types cannot be edited, and their values cannot be edited
manually.

8.7.9. Configurable indicators
Some indicators, provided by Ontrack, are configurable:

* they are disabled by default, and an administrator must enable them

» optionally, these indicators take some parameters
Once enabled, these configurable behave like any other computed indicator:

 they are computed in the background

* they cannot be edited

As an administrator, you can access the list of configurable indicators through Indicators >
Configuration:

87

Portfolios Access to the indicator portfolios.
Configuration Management of the confiqurable indicators.

Categories Management of the indicator categories.
Types Management of the indicator types.
Views Management of the indicator views.

In the following page, the list of configurable indicators is shown, with their current status (enabled
/ disabled), their parameters, etc.

GitHub repository settings
github—compliance-repository-default-branch-should-be-main A repository default branch SHOULD be main m
github-compliance-repository-must-have-a-readme The repository MUST have a README file m
github-compliance-repository-must-have-description A repository MUST have a description m
github-compliance-repository-must-not-the-issues-feature A repository MUST NOT have the issues feature
github-compliance-repository-must-not-the-projects-feature A repository MUST NOT have the projects feature w
github—compliance-repository-must-not-have-the-wiki-feature A repository MUST NOT have the Wiki feature
GitHub repository structure
github-compliance-repository-must-have-maintaining-team A repository MUST be assigned to at least one team m
github-compliance-repository-must-not-have-any-admin A repository MUST NOT have any administratorm

github—compliance-repository-team-must-have-description A repository team MUST have the {regex} expression in its description [EETZ) regex : wiki/."

The administrator can use the edit button (pencil icon) to edit a given indicator and fill:

« its status: enabled or disabled

 an optional link (to some additional and specific documentation for example)

* some parameters specific to this indicator

Configure A repository team MUST have the
{regex} expression in its description

Enabled @® Yes O No

Is this indicator enabled?

Link link

Link to a description for this indicator

Regular wiki/.*
expression

88

Chapter 9. Integrations

Ontrack interfaces with several systems, both for its own functioning and for collecting data.

9.1. Working with GitHub

GitHub is an enterprise Git repository manager on the cloud or hosted in the premises.

When working with Git in Ontrack, one can configure a project to connect to a GitHub repository.

9.1.1. General configuration

The access to a GitHub instance must be configured.

1. as administrator, go to the GitHub configurations menu

2. click on Create a configuration

3. in the configuration dialog, enter the following parameters:
- Name - unique name for the configuration

o URL - URL to the GitHub instance. If left blank, it defaults to the https://github.com location
Several authentication modes are supported:

e User & Password - credentials used to access GitHub

* OAuth2 token - authentication can also be performed using a Personal Access Token instead of
using a user/password pair

» GitHub App - see below for more information

The existing configurations can be updated and deleted.

Although it is possible to work with an anonymous user when accessing GitHub,

(r) this is not recommended. The rate of the API call will be limited and can lead to
et some errors.

9.1.2. GitHub App authentication

In large Ontrack setup, with hundreds of GitHub repositories, using a GitHub Personal Access
Token might not be enough any longer since we can very fast hit the 5000 API rate limit of GitHub.

Using a GitHub App extends this limit a bit more.
Creating a GitHub app
In your personal settings, go to Developer settings > GitHub Apps and click New GitHub App:

* GitHub App name - any name

* Homepage URL - your Ontrack URL (for example, not used, but required)

89

https://github.com
https://github.com
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

* Uncheck Webhook > Active
* Repository permissions:
o Actions / Read-only (optional)
o Contents / Read-only
o Issues / Read-only
o Pull requests / Read-only
o Organization permissions
o Members / Read-only
 Select the Any account option

* Select Create GitHub App
Then Generate a private key and save the generated PEM file.

This PEM file must be converted in order to be used in Ontrack. Given the app.pem file downloaded
from GitHub in the previous step, generate a new PEM file (ontrack.pem for example, it does not
matter):

openssl pkcs8 -topk8 -inform PEM -outform PEM \
-nocrypt \
-in app.pem \
-out ontrack.pem

The content of the generated PEM file will be used for the GitHub configuration in Ontrack.

Installing the GitHub app

Still on the GitHub app page:

* Note down the ID of the app

Select the Install App menu
* Select the organization/user you want to use this app into

* Select its scope

Select Install

Configuring authentication

When creating a GitHub configuration, the following parameters must be set to use a GitHub App
for the connection from Ontrack:

* App ID - the ID that you noted in the previous step

« App Private Key - the content of the PEM that you generated previously. It must start with -----
BEGIN PRIVATE KEY -----

The App Installation Account Name is needed whenever you have installed this app in more than

90

one organization. In this case, specify the organization name in this field.

GitHub app tokens

Authentication tokens based on GitHub Apps are valid for one hour. They are renewed
automatically by Ontrack.

The list of GitHub configurations lets you see the validity of the tokens for the configurations based
on GitHub Apps:

home

GitHub configurations
Management of the GitHub configurations.

List of configurations

Name URL Authentication Used rate limits User GitHub App

App https://github.com APP core: 0/5000 143291 (for nemerosa) Valid until: 2021-10-12T06:57:46 (UTC) v Valid
graphql: 0/5000 Created at 2021-10-12T05:67:46.838041 UTC

Token https://github.com TOKEN core: 5/5000

graphal: 0/5000

9.1.3. Project configuration
The link between a project and a GitHub repository is defined by the GitHub configuration property:
* Configuration - selection of the GitHub configuration created before - this is used for the
accesses
* Repository - GitHub repository, like nemerosa/ontrack

* Indexation interval - interval (in minutes) between each synchronisation (Ontrack maintains
internally a clone of the GitHub repositories)

* Issue configuration - issue service. If not set or set to "GitHub issues", the issues of the repository
will be used

Branches can be configured for Git independently.

SCM Catalog configuration

The SCM Catalog feature requires some additional configuration for GitHub. See the specific section
for more information.

9.1.4. GitHub metrics

When Ontrack contains at least one GitHub configuration, the following metrics are exposed to
signal how the rate limit currently is:

* ontrack_extension_github_ratelimit_core_limit

» ontrack_extension_github_ratelimit_core_remaining

» ontrack_extension_github_ratelimit_core_used

* ontrack_extension_github_ratelimit_graphql_limit

91

* ontrack_extension_github_ratelimit_graphql_remaining

» ontrack_extension_github_ratelimit_graphql_used

All these metrics are tagged with configuration. The value of the tag is the name of the
configuration in Ontrack.

These metrics are enabled by default but can be disabled by setting the
ontrack.extension.github.metrics.enabled configuration property to false.

9.2. GitHub Ingestion

In addition to Ontrack being able to interact with GitHub, it is also possible to set up a webhook in
GitHub so that data from GitHub Actions workflows is automatically ingested by Ontrack, without
having the workflows being adapted in any way. This allows for a seamless integration between
GitHub Actions workflows and Ontrack.

9.2.1. GitHub ingestion features
When a workflow runs, the following items are created or updates in Ontrack.

The project in Ontrack will be called like the repository, adjusted for Ontrack naming conventions
for entities. It'll be associated with the first matching GitHub configuration. Optionally, the
organization name can be set as a prefix to the project names using the global settings.

The branch is Ontrack will be called according the head branch (or the PR name) and its Git branch
will also be set.

The build is created by aggregating the workflow name and the run number. Additionally, the
following properties are set:

¢ the Git commit property

* the run info
Validation stamps are created using <job>-<step>, adjusted for the Ontrack naming convventions.

Builds and validation runs are associated with properties & decorations linking to the source
workflow run in GitHub.

The creation of the validation runs occurs as the workflow run is in progress, allowing Ontrack to
collect information as it goes.

Release property on tag

If a tag is pushed, Ontrack will look for all builds being associated with tag’s commit, and the
release property will be set on these builds using the shortened tag name.

For example:

* a build has been created with commit property set to 1abcdef

92

https://docs.github.com/en/developers/webhooks-and-events/webhooks/about-webhooks

* atag1.2.1is pushed for the 1abcdef commit

* the build is "tagged" (its release property is set) to 1.2.1

9.2.2. Ontrack setup

At least one GitHub configuration must be created.

The communication between GitHub and Ontrack is secured through a specific token, outside the
Ontrack normal authentication mechanisms.

This secret can be generated by using:
ruby -rsecurerandom -e 'puts SecureRandom.hex(20)'

but other ways are also acceptable.

In the Settings, go to the GitHub workflow ingestion section and set the token as previously
generated.

9.2.3. GitHub setup
In GitHub, the Ontrack ingestion hook can be setup at repository or at organization level.
Go to the Settings > Webhooks section and add a new webhook:

* URL - <ontrack>/hook/secured/github/ingestion
* Content type - application/json
» Secret - the secret you generated in the Ontrack setup
* Permissions:
o Workflow jobs
o Workflow runs

o Pushes (for autoconfiguration, see later)

9.2.4. Link to the GitHub configuration

Upon reception of hook events by Ontrack, the created projects will be associated with a GitHub
configuration using the following order of priority:

* the configuration parameter of the hook request (see below) is used to get an existing GitHub
configuration by name
* if there is one and only one existing GitHub configuration, it’s used

+ if there are more than one GitHub configuration, we get the list of configurations whose URL
matches the incoming event. If there one and only one matching configuration, it is used

* in all other cases, the payload is marked as being failed.

93

When configuring the hook in GitHub, the configuration parameter may be added to explicitly
select an existing GitHub configuration:

<ontrack>/hook/secured/github/ingestion?configuration=<name>

If you have only one configuration in Ontrack, this parameter is not needed. Use it

o only when dealing with several configurations using the same root URL (for
example, when having several organizations using a GitHub App for
authentication).

9.2.5. Customization

The default behaviour of the ingestion can be customized by putting a
.github/ontrack/ingestion.yml file in the repository.

All fields are optional and when omitted, default values are used.

This file is taken into account automatically, on push or when the ingestion configuration has not
been loaded yet.

Version of the configuration (required)
version: v2
Optional: Configuration for the ingestion of the workflows
workflows:
Optional: Filter on the workflow names
filter:
includes: ".*"
excludes: ""
Optional: Creation of validation runs at the workflow level
validations:
Optional: Is the creation of validation runs for workflows enabled?
enabled: true
Optional: Filter on workflows to select the ones for which a validation must be
created

filter:
includes: ".*"
excludes: ""

Optional: Prefix to use for the validation stamp
prefix: "workflow-"
Optional: Suffix to use for the validation stamp
suffix: ""

Optional: List of events to accept for the processing of a workflow

Default value: ‘push’ event only

events:

- push

Optional: Filter on the Git branch names

branchFilter:

includes: ".*"

94

#
Opti

excludes:
onal: Filtering the pull requests

includePRs: true
Optional: Configuration for the ingestion of the jobs

jobs:

Optional: Filter on the jobs names

i fi
i
#

lter:
includes: ".*"
excludes: ""

Optional: Using the job name as a prefix for the validation stamps
validationPrefix: true
Optional: Mappings between job names and validation stamps

mappings:
Required: Name of the job
- name: ...
Optional: Name of the validation stamp
Default value: Name of the job
validation: ...
Optional: Must we use the job name as a prefix to the validation stamp?
Default value: same than "jobs.validationPrefix"
validationPrefix:
Optional: Description of the validation stamp
Default value: Name of the job
description: ...

Optional: Configuration for the ingestion of the steps

steps:

Optional: Filter on the steps names
By default, no step is ingested

¥ filter:
includes: ""
excludes: ".*"
Optional: Mapping between step names and validation stamps
mappings:
Required: Name of the step
¥ - name: ...
Optional: Name of the validation stamp
Default value: Name of the step
validation: ...
Optional: Description of the validation stamp
Default value: Name of the steo
description: ...

Optional: Setup of Ontrack resources

setup:

Optional: Configuration of the validation stamps
validations:

#
#
#
#
#
#

Required: Unique name for the validation stamp in the branch
- name: ...
Optional: Description of the validation stamp
description: ...
Optional: Data type for the validation stamp
dataType:

95

Required: FQCN or shortcut for the data type

type: ...
Optional: JSON data type configuration
config: ...

Optional: Reference to the image to set

image: ...

Optional: Configuration of the promotion levels
promotions:
Required: Unique name for the promotion in the branch
- name: ...
Optional: Description of the promotion
description: String
Optional: List of validations triggering this promotion. Important: these
names are the names of the validations after step name resolution.
validations: []
Optional: List of promotions triggering this promotion
promotions: []
Optional: Regular expression to include validation stamps by name
dinclude: ""
Optional: Regular expression to exclude validation stamps by name
#
#

exclude: ""
Optional: Reference to the image to set
image: ...
Optional: Casc for the project
project:

Optional: Regular expression for the branches which can setup the entity
includes: "main"
Optional: Regular expression to exclude branches
excludes: ""
Optional: JSON Casc configuration for the entity
casc: {}
Optional: Casc for the branch
branch:
Optional: Regular expression for the branches which can setup the entity
includes: "main"
Optional: Regular expression to exclude branches
excludes: ""
Optional: JSON Casc configuration for the entity

casc: {}
Optional: Configuration for the tag ingestion
tagging:

Optional: If the commit property strategy must be applied. True by default.
commitProperty: true
Optional: List of tagging strategies to apply
strategies: []
Required: ID of the tagging strategy
¥ type: ...
Required: JSON configuration of the tagging strategy
config: {}
Optional: configuration of the validation stamp names normalization
Choices: DEFAULT, LEGACY

vs-name-normalization: DEFAULT

For example, if we want to associate the validation stamp unit-tests to the step Runs unit tests in
the build job, we can use:

steps:

filter:
Steps are excluded by default
includes: ".*"
excludes: ""

mappings:

- name: Runs unit tests
validation: unit-tests
validationJobPrefix: false

The ingestion configuration is saved together with the branch and is visible in the UI as extra

information:

Extra information

GitHub Ingestion Config

general:
skipJobs: false
steps: []
jobs: [
JobsFilter:
includes: ".*"
excludes: ""
stepsFilter: 4

This information is also available programmatically using a GraphQL query:

{
branches(id: 589) {
gitHubIngestionConfig {
steps {
filter {
includes
excludes

Customization examples

To configure auto-promotions:

97

setup:
validations:
- name: unit-tests
description: Running all unit tests
dataType:
type: test-summary
config:
warningIfSkipped: true
promotions:
- name: BRONZE
description: Basic build is OK.
validations:
- build
- unit-tests
- name: SILVER
description: End to end tests are OK.
validations:
- ui-acceptance
- api-acceptance
promotions:
- BRONZE

Validation stamps

Validation stamps can be defined using the validations list.
Each validation stamp can be associated with a name and an optional description.

Additionally, a data type can be set. The FQCN of the data type can be used but most common types
have also shortcuts. Therefore, the following declarations are equivalent:

setup:
validations:
- name: unit-tests
description: Running all unit tests
dataType:
type: test-summary
config:
warningIfSkipped: true

and

98

setup:
validations:
- name: unit-tests
description: Running all unit tests
dataType:
type:
net.nemerosa.ontrack.extension.general.validation.TestSummaryValidationDataType
config:
warninglfSkipped: true

The following shortcuts are supported:

* test-summary
* metrics
* percentage

e chml

See [validation-runs-data] for more information.

Configuration as code for projects and branches

The ingestion.yml file can be used to configure the projects and the branches.

The support for CasC of the projects and branches is currently experimental. While
the feature would probably stay, it’s possible that some syntax may change. Also,
not many configuration aspects are supported at the moment.

Example - configuring the stale property at project level from the main branch:

setup:
project:
properties:

staleProperty:
disablingDuration: 30
deletingDuration: 0
promotionsToKeep:

- GOLD

includes: main
excluded: ""

Whenever the ingestion.yml is pushed on the main branch, the stale property will be set on the
project.

Change log

99

vl

* added a vs-name-normalization optional field with LEGACY as the default value - see Validation
stamp names for more information

v2

* added a vs-name-normalization optional field with DEFAULT as the default value - see Validation
stamp names for more information

9.2.6. General settings
In the Settings > GitHub workflow ingestion section, you can configure the following features:

* if the ingestion of GitHub hooks is enabled or not

* the secret token used by the GitHub hook

* the number of days GitHub hook payloads are kept by Ontrack

« if the organization name must be used as a prefix for the generated project names
* the default Git indexation interval to use for the projects

* inclusion/exclusion rules for the repositories to be ingested

 the identifier of the issue service to use by default. For example self for GitHub issues or
jira//config.

9.2.7. Validation stamp names

By default, a step My step running in the My job job will be associated with the following name: My
job-My step. This can be configured in many ways.

The validation stamp name can be specified in the step configuration using the validation field. For
example, we can force the My step to be named my-job-unit-tests by using the following
configuration:

steps:
mappings:
- name: My step
validation: unit-tests

The job prefix (my-job in our example) is added by default, and is computed from the job name, and
can also be configured using the validation field in the job configuration.

Configuring the addition or not of the job as a prefix to the general validation stamp can be done at
several levels:

* at the step ingestion configuration level

+ at the job ingestion configuration level

When facing the naming of a step, how to decide if the job prefix must be used or not?

100

* if defined at step level, use this value

* if defined at job level, use this value

There is a vs-name-normalization which can be set at the root of the configuration with one of the
following values:

* DEFAULT - a "My job" job and a step "My step" are rendered as My job-My step

» LEGACY - lowercase & escaping the whitespaces: my-job-my-step.

9.2.8. Support for pull requests

Ingestion of events for the pull requests is supported.

o The support for the ingestion of pull request events is in beta mode so changes are
expected to happen in subsequent releases.

From an Ontrack point of view, the following lifecycle is supported:

* a PRis opened - a corresponding branch is opened

* a PRis built or is synchronized - if a workflow is run for this PR, a build and its validation stamps
will be created the same way as for regular branches. Note that the ingestion configuration for a
PR is always fetched from the head branch of the pull request.

* a PRis closed (merged or not) - the corresponding branch is disabled

9.2.9. Management

The Ontrack hook receives all registered GitHub event payloads. The latter are processed in a queue
and then kept for investigation and inspection.

o The payloads whose signature cannot be be checked or is not OK are not stored.

The number of days these payloads are kept is configured in the global settings.

An Ontrack administrator can access the list of payloads using the GitHub Ingestion Hook Payloads
user menu:

hom

GitHub Ingestion Hook Payloads
List of payloads received and processed by the GitHub ingestion Hook.

£ Auto reload | [] SCHEDULED [) PROCESSING [ERRORED [] COMPLETED Delivery ID Event @ Reset

Ontrack ID Timestamp GitHub Delivery ID Event Status. Completion

f4c92468-eb2f-4a33-aee2-7c473bfbf432 2021-11-07 15:51:48+0100 9d725f80-3fe2-11ec-97cc-c7596b42457f workflow_run COMPLETED 2021-11-07 16:51:48+0100

d6a6c7b8-2b9c-48a7-bIed-cb2c959712b1 2021-11-07 15:51:47+0100 9d315ee@-3fe2-1lec-9cch-bab@1d80985¢ workflow_job COMPLETED 2021-11-07 16:51:48+0100

ccccdf36-eddc-42b2-8033-65efa8e5d010 2021-11-07 15:51:44+0100 9ad6f420-3fe2-11ec-8721-c33448febofo workflow_job COMPLETED 2021-11-07 15:51:44+0100

9f1dcf8d-8dbo-43cd-b181-eec64alc8Oct 2021-11-07 15:51:36+0100 96392910-3fe2-11ec-9612-677bd6ebaclb workflow_job COMPLETED 2021-11-07 15:51:36+0100

£0576b2b—e32b-48c5-bcBd-afb520bcbeb6 2021-11-07 15:51:35+0100 9589fd50-3fe2-11ec-9ed1-abb175c7020e workflow_run COMPLETED 2021-11-07 15:51:36+0100

M{Newest payloads |~ 4(Newer payloads P Older payloads

The Auto refresh button allows the content of the payload list to be automatically refreshed every
10 seconds. The settings are saved in the browser local storage.

The list can be filtered using the following arguments:

101

* the processing statuses:

o SCHEDULED - the payload has been received and queued for later processing.

o

PROCESSING - the payload is currently being processed. Some Ontrack elements may have
already been created.

o

ERRORED - the processing failed. The payload entry in the list will have an explanation.

)

COMPLETED - the processing of the payload completed successfully.

* the GitHub Delivery ID - each event payload sent by GitHub is associated with a unique delivery
ID.

* the GitHub event - the event which sent the payload

By clicking on the internal Ontrack ID (leftmost column), you can display for information about the
payload, including its complete JSON content:

Ontrack ID Timestamp GitHub Delive

f4c92468-eb2f-4a33-aee2-7c473bfbf432 2021-11-07 15:51:48+0100 9d725f80-3

{

"action": "completed",

"sender": {
"id": 1206964,
"url": "https://api.github.com/users/dcoraboeuf”,
“type": "User",
"login": "dcoraboeuf",
"node_id": "MDQBVXNIcjEyMDY5NjQ=",
"html_url": "https://github.com/dcoraboeuf”,
"gists_url": "https://api.github.com/users/dcoraboeuf/gists{/gist_id}",
"repos_url": "https://api.github.com/users/dcoraboeuf/repos",
"avatar_url": "https://avatars.githubusercontent.com/u/1206964?v=4",
"events_url": "https://api.github.com/users/dcoraboeuf/events{/privacy}",
"site_admin": false,
"gravatar_id": "",
"starred_url": "https://api.github.com/users/dcoraboeuf/starred{/owner}{/repo}",
"followers_url": "https://api.github.com/users/dcoraboeuf/followers",
"following_url": "https://api.github.com/users/dcoraboeuf/following{/other_user}",
"organizations_url": "https://api.github.com/users/dcoraboeuf/orgs",
"subscriptions_url": "https://api.github.com/users/dcoraboeuf/subscriptions",

9.2.10. Metrics
The metrics are grouped in the following categories:

* hook reception level
* ingestion queing

* ingestion processing

Hook metrics

102

Metric

ontrack_extension_gith
ub_ingestion_hook_sign
ature_error_count

ontrack_extension_gith
ub_ingestion_hook_rep
ository_rejected_count

ontrack_extension_gith
ub_ingestion_hook_rep
ository_accepted_count

ontrack_extension_gith
ub_ingestion_hook_acc
epted_count

ontrack_extension_gith
ub_ingestion_hook_ign
ored_count

Queue metrics

Metric

ontrack_extension_gith
ub_ingestion_queue_pr
oduced_count

ontrack_extension_gith
ub_ingestion_queue_co
nsumed_count

Processing metrics

Metric

ontrack_extension_gith
ub_ingestion_process_st
arted_count

ontrack_extension_gith
ub_ingestion_process_s
uccess_count

ontrack_extension_gith
ub_ingestion_process_i
gnored_count

ontrack_extension_gith
ub_ingestion_process_e
rror_count

Type

Counter

Counter

Counter

Counter

Counter

Type

Counter

Counter

Type

Counter

Counter

Counter

Counter

Tags

event

event,owner,repository

event,owner,repository

event,owner?,repositor
y?

event,owner?,repositor
y?

Tags

event,owner?,repositor
y?,routing

event,owner?,repositor
y?,queue

Tags

event,owner?,repositor
y?

event,owner?,repositor
y?

event,owner?,repositor
y?

event,owner?,repositor
y?

Description

Number of rejections
because of signature
mismatch

Number of repository-
based events rejected
because the repository
was rejected

Number of accepted
repository-based events

Number of events
which are scheduled
for processing

Number of events
which were accepted
but won’t be processed

Description

Number of payloads
sent to the queues

Number of payloads
received by the queues

Description

Number of payloads
whose processing has
started

Number of payloads
whose processing has
succeeded

Number of payloads
whose processing has
been ignored

Number of payloads
whose processing has
finished with an error

103

Metric Type Tags Description

ontrack_extension_gith Counter event,owner?,repositor Number of payloads
ub_ingestion_process_fi y? whose processing has
nished_count finished
ontrack_extension_gith Timer event,owner?,repositor Time it took to process
ub_ingestion_process_ti y? this payload

me

9.2.11. Configuration

See Configuration properties for the list of all available properties.

Routing

By default, Ontrack uses one unique RabbitMQ queue to process all incoming payloads, with a
maximum concurrency of 10.

In some cases, when some repositories are more active than others, it may be useful to create other
queues in order to prioritize the work.

You can define routing configurations based on regular expressions matching the repository owner
& names. For example:

ontrack:
extension:
github:
ingestion:
processing:
repositories:
very-active:
repository: my-very-active-repository

This will create an additional queue, called github.ingestion.very-active where all the processing
for the my-very-active-repository repository will be sent to.

Queues configurations

Both the default queue and the repository specific queues can have their number of consumers
being configured:

104

ontrack:
extension:
github:
ingestion:
processing:
repositories:
very-active:
repository: my-very-active-repository
config:
concurrency: 20
default:
concurrency: 10

See Configuration properties for the list of all available properties.

9.3. Working with Bitbucket Cloud

Bitbucket Cloud is an enterprise SaaS Git repository manager by Atlassian.

When working with Git in Ontrack, one can configure a project to connect to a Git repository
defined in Bitbucket Cloud.

9.3.1. General configuration

The access to a Bitbucket Cloud workspace must be configured.

The access to Bitbucket Cloud from Ontrack is configured at Bitbucket Cloud
o workspace level. If your Ontrack instance uses several workspaces, you can define
several Bitbucket Cloud configurations, one per workspace.

1. as administrator, go to the Bitbucket Cloud configurations menu
2. click on Create a configuration
3. in the configuration dialog, enter the following parameters:

- Name - unique name for the configuration

- Workspace - name of the Bitbucket Cloud workspace to use

o User & Password - credentials used to access Bitbucket Cloud. The password must be a
Bitbucket Cloud app password.

The app password must be granted at least the following rights:

* project > read

o * repository > read

* pull requests > read

e issues > read

105

https://bitbucket.org
https://support.atlassian.com/bitbucket-cloud/docs/app-passwords/

The existing configurations can be updated and deleted.

Configuration as Code

You can use configuration as code to configure the Bitbucket Cloud configurations. For example:

ontrack:
config:
bitbucket-cloud:

- name: my-config
workspace: my-workspace
user: my-user
password: <app password>

9.3.2. Project configuration

The link between a project and a Bitbucket Cloud repository is defined by the Bitbucket Cloud
configuration property:

» Configuration - selection of the Bitbucket Cloud configuration created before
* Repository - name of the Bitbucket Cloud repository

o Indexation interval - interval (in minutes) between each synchronization (Ontrack
maintains internally a clone of the Bitbucket Cloud repositories)

o Issue configuration - configured issue service to use when looking for issues in commits.

Branches can be configured for Git independently.
9.4. JIRA integration
9.5. Artifactory integration

9.6. SonarQube integration

It’s possible to configure projects so that any build which has been scanned by SonarQube gets
some measures registered in Ontrack and those same measures can then be exported as metrics.

106

% [+] Ontrack SonarQube

’ Project Build Q) 8
Configurator | Cl SonarQube extension Profect | InfluxDB
|

—
Configuration

|
Configyre:

association

i
i
i
I
SpnarQube project !
|
i
I
i

'
i
'
'
|
Scanning

[| RN ———— | —

i
a puild is created by the Cl process
i

| orits label.

a bean is perforined fi?f the same build 1| Build identification is based on either the name of the build b‘
[l

creates a validation run for the scan

gets the list| of measures for this bujld

measures|

_ stores the measures

stores the measures

T
]
i
i
]
i
i
]
i
i
]
i
| this triggers the collection of measures _|
i {
i i
i [}
i i
i i
i 1,
i h
i i
i |
i l
i i
i L
i |

Configurator | C SonarQube extension Project InfluxDB

9.6.1. General configuration
One configuration must be created per SonarQube server you want to integrate.

As an administrator, you need to select "SonarQube configurations” in your user menu and create
SonarQube configurations by setting three parameters:

* Name - name for this configuration

* URL - the root URL of the SonarQube server

* Token - an authentication token to get information from SonarQube

9.6.2. Global settings

As an administrator, go to the Settings menu. In the SonarQube section, click on Edit and fill the
following parameters:

Name Default value Description

Measures critical_violations, coverage List of SonarQube metric names
to collect. They can be
completed or overridden at
project level.

Disabled No Global flag to disable the
collection of SonarQube
measures

9.6.3. Project configuration

In order to enable the collection of SonarQube measures for a project, it must be associated with
the "SonarQube" property.

The property needs the following parameters:

107

https://docs.sonarqube.org/latest/user-guide/user-token/

Name Default value Description

Configuration Required SonarQube server
configuration
Key Required Key of the project in SonarQube

(typically group:artifact)

Validation stamp sonarqube Name of the validation stamp,
which, when granted to a build,
triggers the collection of
SonarQube measures.

Measures Empty List of SonarQube metric names
to collect for this project,
additionally to those defined
globally.

Override No If set to Yes, this causes the list
of metric names defined by the
value of Measures to take
precedence on the global
settings.

Branch model No If set to Yes, restricts the
collection of SonarQube
measures to the builds which
are branch which comply with
the project branch model.

Branch pattern Empty If set, it defines a regular
expression to use against the
branch name (or Git path)

o The Branch model and Branch pattern can be combined together.

9.6.4. Identifying measures in SonarQube
Ontrack looks for the measures in SonarQube using the following approach.
It looks first for analyses in SonarQube for the corresponding:

 project as defined in the SonarQube property of the Ontrack project, typically group:artifact

* branch - either the Git branch associated with the Ontrack branch if any or the Ontrack branch
name

This implies that your SonarQube analysis parameters must include the

o corresponding branch name. If you use the Git branch name for your SonarQube
analysis, make sure that the same Git branch is associated with your Ontrack
branch.

108

Once the analyses have been collected, the specific analysis for the Ontrack build will be looked for
based on the:

* version - set to either the release label associated to the Ontrack build if any or the Ontrack build
name

Once the analysis for the Ontrack build has been found, its measures are collected and filtered
based on the measures property.

9.6.5. Build measures

Once SonarQube measures have been collected for a build, they are available in the Information
section of the build page.

9.6.6. Export of measures

Once SonarQube measures have been collected for a build, they are automatically exported as
metrics if enabled.

See Metrics for more information.

The list of metrics are the following.

Collection metrics

All metrics linked to the collection of the measures are associated with the following tags:

* project - name of the build’s project
* branch - name of the build’s branch

* uri-SonarQube URL
Following metrics are collected:

* ontrack_sonarqube_collection_started_count - counter - number of times a collection is started
» ontrack_sonarqube_collection_success_count - counter - number of times a collection is a success
e ontrack_sonarqube_collection_error_count - counter - number of times a collection is a failure

* ontrack_sonarqube_collection_time - timer - histogram of times for the collections

Missing measures

e ontrack_sonarqube_collection_none - counter - number of times a measure is collected but none
such measure was available in SonarQube

This metric is associated with following tags:

* project - name of the build’s project
e branch - name of the build’s branch

* uri-SonarQube URL

109

e measure - name of the measure

Measures

Measures associated to builds are exported to metrics using:

* metric name - ontrack_sonarqube_measure
* tags:
o project - name of the build’s project
o branch - name of the build’s branch
o build - name of the build for which measures are collected
o version - display name of the build
o status - the validation run status reported for the stamp
o measure - name of the measure
* value - value of the measure

* timestamp of the metric is the creation time of the build

9.7. Integration with Jenkins

Jenkins can inject data into Ontrack - see Jenkins plug-in for this purpose. But Ontrack can also link
builds to Jenkins by:

* defining a Jenkins configuration

* setting a link to a Jenkins folder at project or branch level

* setting a link to a Jenkins build at build level

* triggering Jenkins builds on Notifications

9.7.1. Triggering Jenkins builds on notifications

Upon a notification, one may want to trigger a Jenkins build. For example, given a build being
promoted to a certain level ("BRONZE" for example), one may want to trigger a Jenkins build to
complete additional validations. This is a pretty good way to perform long-running deployment
pipelines (security scans, performance tests, etc.) while avoiding coupling pipelines together.

To do this, a subscription can be created at the promotion level, to listen to "new promotion runs"
events and to trigger a Jenkins pipeline.

Using the UL, the subscription looks like:

* Configuration - the Jenkins configuration to use (it defines the URL to connect to, the credentials
to use)

* Job - the relative path to the job to launch.

» Parameters - a list of name/value pairs to pass to the Jenkins job as parameters

110

* Call mode - defines if the job must be called asynchronously (the default) or synchronously. In
the former case, Ontrack fires the job and then returns immediately. In the later case, Ontrack
will wait for the job to complete and check its result before considering the notification
successful. Note that this can have impacts on performances.

* Timeout - in case the synchronous call mode is used, defines the amount of seconds to wait for
the completion of the Jenkins build

Several remarks:

» for the job, a reduced path, without the /job/ separator can be used. Keeping the /job/
separator is fine as well. So the job/sandbox/job/test-notification and sandbox/test-
notification are in this regard equivalent.

* the job and parameters values are using the templating engine

For example, a parameter value may contain ${project} as a value, indicating that the project name
linked to the event the notification is about will be used as a value.

Other placeholders, like branch, promotionLevel, etc., are available, depending on the type of event.
Their values can also be updated and encoded. See Templating engine for a list of options.

Using the API

The GraphQL API can be used to setup the promotion:

111

mutation {
subscribePromotionLevelToEvents(input: {

project: "my-project",

branch: "my-branch",

promotion: "BRONZE",

channel: "jenkins",

channelConfig: {
config: "my-jenkins-config-name",
job: "my-folder/my-pipeline/${branch.scmBranch|urlencode}",
parameters: [

{
name: "PROMOTION",
value: "${promotionLevell}"
}
Il
callMode: "ASYNC"
iy
events: [
"new_promotion_run"
]
HA
errors {
message
}
subscription {
id
}

Definition as code

Like all other subscriptions, the Jenkins notifications can be defined as code. For example, to define
a trigger for a promotion level:

112

ontrack:
extensions:
notifications:
entity-subscriptions:
- entity:
project: my-project
branch: my-branch
promotion: GOLD
subscriptions:
- channel: jenkins
channel-config:
config: my-jenkins-config-name
job: "my-folder/my-pipeline/${branch.scmBranch|urlencode}",
parameters:
- name: PROMOTION
value: "${promotionLevell}"
callMode: ASYNC
events:
- new_promotion_run

9.8. Notifications

Ontrack has the possibility to send notifications to different backends like some webhooks, email,
Slack messages, etc.

g By default, notifications are not enabled. You need to activate them by setting the
ontrack.config.extension.notifications.enabled configuration property to true.

A notification is the association between an event occurring on an entity and sent to a given channel
using some configuration.

For example, a notification can be:

* event: a build has been promoted

* entity: the branch the build belongs to

* channel: email

* channel configuration: the subject & the email addresses
* an optional custom template

In this example, the body of the email would be a text like "Build B of branch R in project P has
been promoted to P", which various links to Ontrack.

o By default, the notifications use the default templates of the events but a custom
template can be provided.

Administrators of Ontrack can create and configure the different backends.

113

They can also configure the notifications at entity level to respond to some events using notification
configurations (subscriptions).

Subscriptions can be either local (subscribing to the events on a given branch) or global
(subscribing to the events in all Ontrack, regardless of the entity).

9.8.1. Notification backends

See Notifications for a complete list of the existing notification backends and their configurations.

9.8.2. Subscriptions

Subscriptions can be done at entity level (project, branch, promotion, etc.) or globally.

Local subscriptions

On an entity page (like the page for a project, a branch, etc.), go to the Tools menu and select _
Subscriptions_:

[Subscriptions menu] | integration-notifications-subscriptions-menu.png
On the subsequent, you can manage the list of subscriptions at this entity level.
[List of subscriptions] | integration-notifications-subscriptions-list.png

To create a subscription, select the New subscription command and enter the fields for the
subscription:

[New subscription dialog] | integration-notifications-new-subscription.png

* events - list of events to listen to

» keywords - space-separated list of words which will be used to restrict the events being listened
to

channel - destination for the notification. Depending on the channel being selected, additional
fields are needed (for example, for a Slack notification, the Slack channel is required)

 custom template - if provided, it'll override the default template associated with the event. See
Templating engine for its syntax.

On the subscription list, you can:

* enable/disable each subscription

* delete a subscription

Global subscriptions

The management of the global subscriptions is exactly the same as for the local ones, but for the
fact that the global subscriptions are accessible through the Global subscriptions menu.

114

Global subscriptions can be configured using CasC. For example:

ontrack:
extensions:
notifications:
global-subscriptions:

o - events:
- new_promotion_run

keywords: "GOLD main"
channel: slack
channel-config:
channel: "#my-channel"
contentTemplate: |
Promoted to ${promotionLevel}.

9.8.3. Recordings

For audit and troubleshooting purposes, all notifications are recorded and administrators can have
access to them using the Notification recordings user menu:

[Notifications recordings] | integration-notifications-recordings.png
Each recording has the following columns:

« timestamp (UTC) - when was the notification actually sent
* channel - which channel was used by the notification
* result - outcome of the notification

> OK - notification was sent successfully

o NOT_CONFIGURED - the notification channel not configured

o

INVALID_CONFIGURATION - the notification channel is wrongly configured
DISABLED - the notification channel has been disabled

o

o ERROR - there was an error
By clicking on the eye icon left of the timestamp, you can see more details about the notification:
[Notification recording details] | integration-notifications-recording-details.png

* Channel config - the JSON representation of the configuration of the notification channel

* Event - the JSON representation of the event being sent

Finally, the administrator can filter recordings on their results and the Delete ALL records can be
used to clear out all recordings.

115

9.8.4. Examples

This section shows a number of custom templates for some events.

To send a change log on a promotion, subscribe to the new_promotion_run event and use for example:

Change log:

${promotionRun.changelog}

If the project builds have linked to a dependency project’s builds, it may be interesting to follow the

links recursively:

Change log for ${build.release}:
${promotionRun.changelog}
Change log for the dependency:

${promotionRun.changelog?project=dependency}

9.8.5. Metrics

Following metrics are sent by Ontrack about the notifications:

Metric Tags

ontrack _extension_notification event
s_event_listening_received

ontrack _extension_notification event
s_event_listening_queued

ontrack_extension_notification event
s_event_listening_dequeued

ontrack_extension_notification None
s_event_listening_dequeued_err
or

ontrack extension_notification event
s_event_listening

ontrack_extension_notification event, channel, routing
s_event_dispatching_queued

ontrack_extension_notification event, channel, routing
s_event_dispatching_dequeued

116

Description

Count of events being received

Count of events being actually
queued

Count of events being removed
from the queue for dispatching

Count of uncaught errors when
listening to events

Count of events whose
dispatching starts

Count of events whose
dispatching starts (pushed into
the dispatching queue)

Count of events whose
dispatching starts (pulled from
the dispatching queue)

Metric

ontrack_extension_notification
s_event_dispatching_result

ontrack _extension_notification
s_event_processing_started

ontrack_extension_notification
s_event_processing_channel_sta
rted

ontrack_extension_notification
s_event_processing_channel_unk
nown

ontrack _extension_notification
s_event_processing_channel_inv
alid

ontrack _extension_notification
s_event_processing_channel_pub
lishing

ontrack_extension_notification
s_event_processing_channel_res
ult

ontrack_extension_notification
s_event_processing_channel_err
or

Tags

event, channel, result

event, channel

event, channel

event, channel

event, channel

event, channel

event, channel, result

event, channel

The overall processing of events looks like this:

Description

Count of events whose
dispatching is finished

Count of events whose
processing is started

Count of events whose
processing is started on an
actual channel

Count of events whose
processing is stopped because
the channel is unknown

Count of events whose
processing is stopped because
the channel or its configuration
is invalid

Count of events whose
publication into a channel has
started

Count of events whose
publication into a channel has
finished

Count of events whose
publication into a channel has
failed

117

. J
Receiving/ l

(Eue nt receive d)

¥

(Event pushed on listening queue)

Y
(Listening queue)
Listening)
Y

(Euent removed from the listening queue)

¥

(Getting all subscriptions for this event)

For each subscription,/
L J

[E'-.-'ent pushed on dispatching queue)

Y

(Dispatching queue)

DisEatching)
Y

[Event removed from the dispatching queue)

Y

[F’ubli::aticm to the channel)

®

9.9. Integration with Slack

Ontrack can be configured to send notifications to Slack.
Slack settings are available in Settings > Slack settings:

* Enabled - if Slack integration is enabled or not
» Token - Slack token
* Emoji - optional, a string like :ontrack: to set as icon for the Slack messages sent by Ontrack

* Endpoint - optional, a URL for the Slack API (if custom)

118

The logo from Ontrack can be find in the source code at https://github.com/
o nemerosa/ontrack/blob/master/ontrack-web/src/assets/logo-128.png (other sizes
are available).

This configuration can also be set as code:

ontrack:
config:
settings:
slack:
enabled: true
token: some-secret-token
emoji: ":ontrack:"
9.9.1. Slack setup

This section explains how to setup your workspace for Ontrack to be able to send messages in some
channels.

First, you need to create a Slack app by following the instructions at https://api.slack.com/
authentication/basics:

* create the Slack App
* the chat:write scope is enough for Ontrack
* add also chat:write.public if you want to allow all public channels to be writable by Ontrack

* install the App into your workspace and copy the Bot token value for the setup above

For public channels, unless the chat:write.public scope has been granted, and for private channels,
you need to invite the App into the channel:

/invite @<App>

9.10. Webhooks

Ontrack can be configured to send notifications to some webhooks using HTTP.

a Webhooks are disabled by default and must be enabled explicitly. See global
settings.

9.10.1. Definitions
Ontrack administrators can create webhooks using the Webhooks entry in their user menu.

Webhooks can be created and deleted.

119

https://github.com/nemerosa/ontrack/blob/master/ontrack-web/src/assets/logo-128.png
https://github.com/nemerosa/ontrack/blob/master/ontrack-web/src/assets/logo-128.png
https://api.slack.com/authentication/basics
https://api.slack.com/authentication/basics

A webhook is defined by the following fields:

* name - a unique name for the webhook, which will be referred to when used in a subscription
* enabled - a flag to disable or enable the webhook
* url- a HTTP URL for the webhook. HTTPS is recommended but not required.

e timeout - number of seconds to wait before the connection to the webhook url is abandoned
(see also timeouts below)

* authentication - the way to authenticate to the webhook (see below)
9.10.2. Authentication
Three types of authentication are supported:

* basic authentication - a username and a password must be provided

* bearer authentication - a token must be provided and will be sent in the Authorization header
with its value set to Bearer <provided token>

* header authentication - a header name and value must be provided

0 Authentication of webhooks is required.

9.10.3. Timeouts

Timeouts for the execution of the webhooks are defined at two levels:

* global settings

* webhook definition

The actual timeout is the maximum value between these two values.

9.10.4. Global settings

The Webhooks section in the global settings allows the configuration of the following:

» enabled - global flag used for all webhooks - set to No by default
* timeout - number of minutes for the global timeout - set to 5 minutes by default

* retention days for the deliveries - number of days to keep the webhooks deliveries records - set
to 30 days by default

A Webhooks are disabled by default and must be enabled explicitly.

9.10.5. Webhooks deliveries

Additionally to the notification recordings, deliveries to the webhooks are also registered by
Ontrack and accessible by an administrator.

The deliveries for a given webhook are accessible through the Deliveries button on the list of

120

webhooks.
[Webhook deliveries] | integration-webhooks-deliveries.png
The following columns are displayed:

 unique ID for the delivery
* name of the webhook
* timestamp of the request

* type of payload

HTTP status sent by the remote webhook
You can get more details by clicking on the UUID or the eye icon:
[Webhook delivery details] | integration-webhooks-deliveries-details.png

* request payload - the JSON actually sent to the webhook
* response payload - the payload returned by the webhook (interpreted as text)
* response timestamp - when the response was received

 stack - the error stacktrace in case of error

o Webhooks deliveries are kept only a given number of days before being deleted.
See global settings.

9.10.6. Payloads
Several types of payloads can be sent by Ontrack but they all share the same structure:

* type: application/json

e schema:

{
"uuid" @ "<uouid>",
"type" : "<payload type>",
"data" : {}

+

The data node type and content depends on the payload type.
event payload

The event payload is sent upon a notification. A typical payload looks like:

{
"uuid" : "fcf07059-6158-4acc-a965-9cbf30c8bdd7",

lltype" : lleventll'

121

"data" : {
"eventType" : {
"id" : "new_branch",

"template" : "New branch ${BRANCH} for project ${PROJECT}."
+

"signature" : null,
"entities" : {
"PROJECT" : {
"id" : 260,
"name" : "p42127192",
"description” : "",
"disabled" : false,
"signature" : {
"time" : "2022-05-02T07:42:12.7511002",
"user" : {
"name" : "admin"
}
}
I
"BRANCH" : {
"id" : 154,
"name" : "b42128333",
"description” : "",
"disabled" : false,
"project" : {
"id" : 260,
"name" : "p42127192",
"description” : "",
"disabled" : false,
"signature" : {
"time" : "2022-05-02T07:42:12.7511002",
"user" : {
"name" : "admin"
}
}
I
"signature" : {
"time" : "2022-05-02T07:42:12.8629007",
"user" : {
"name" : "admin"

}
}
Iy,
"ref" : null,
"values" : { }
}
}

The entities, ref and values fields will vary a lot depending on the type of event.

122

ping payload

A ping payload can be sent from the webhooks list by clicking on the Test button.

It’s used to test a webhook and its payload looks like:

"uuid" : "b438b771-e20c-4012-adf6-adb0@f1aaas3b",

Iltypell : llp_ingll'
"data" : {

"message" : "Webhook wh48546511 ping"

}
}

9.10.7. Webhooks metrics

The following metrics are emitted by Ontrack for the processing of the webhooks:

Metric

ontrack_extension_notification
s_webhooks_delivery_started

ontrack _extension_notification
s_webhooks_delivery_answered

ontrack_extension_notification
s_webhooks_delivery_error

ontrack _extension_notification
s_webhooks_delivery_duration

9.11. Email

Ontrack can be configured to send notifications by email.

9.11.1. Configuration

Email must be configured statically before being used.

Tags
webhook, type

webhook, type, status

webhook, type

webhook, type

Description

Webhook delivery is about to
start

Webhook delivery has
completed with a HTTP status

Webhook delivery has
completed with an error

Duration of the delivery
duration

See the Spring boot documentation for the configuration parameters.

Additionally, the ontrack.config.extension.notifications.mail.from configuration property should

be set for the return address.

9.12. Terraform Cloud integration

In Terraform Cloud, upon the completion of a run (success or failure) you can notify Ontrack of the
result by adding a hook into the Notifications settings of a TFC workspace.

123

https://docs.spring.io/spring-boot/docs/current/reference/html/io.html#io.email

The result of this notification will be the creation of a validation in a build, with a status Passed or
Failed, depending on the result of the run execution.

o In turn, you can use this validation to trigger other events, typically a promotion.

This feature is not enabled by default: in Ontrack, you need to go to the Settings > TFC section:

Enabled ® Yes O No
Is the support for TFC notifications enabled?

Token sessssssess

Secret token to be passed by TFC

¢ enabled - set this to Yes to enable the webhook at Ontrack level

» token - set a secret value which will then be set in Terraform Cloud (see later)

You can define these settings as code:

ontrack:

@ config:

- settings:
tfc:

enabled: true

token: xxxxx

In Terraform Cloud, you can register the Ontrack webhook by going to a workspace settings and
then select Notifications.

There, create a Webhook notification and enter the following values:

* Name - not used by Ontrack, set whichever name suits you the best

* URL - http://<ontrack-url>/hook/secured/tfc?project=&branch=&build=&validation= - see next
section for the parameters

» Token - the token you’ve set in Ontrack TFC settings before

* Triggers - Ontrack only listens to "Completed" and "Errored" events but will just ignore any
other trigger

For the parameters of the Webhook URL, there are 4 possible parameters:

Parameter Description

project (required) Name of the project in Ontrack. It must exist.

124

http://<ontrack-url>/hook/secured/tfc?project=&branch=&build=&validation=

Parameter Description

branch (optional) Name of the branch in Ontrack. If set, it must
exist. If this parameter is not set, the build will
be search among all the branches of the project.

build (optional) Name of the build in Ontrack. If set, it must exist.
If the project is configured to use labels for the
builds, then this parameter is considered a label.
If the build is not set, the branch must be set and
the latest build of the project will be used.

promotion (optional) Name of a promotion in Ontrack. It’s used when
branch is set and not build, to look for the latest
build having this promotion.

validation (required) Name of the validation in Ontrack. If it does not
exist, it’ll be created.

Each of these parameters can be hardcoded:
project=my-project

or set by reference:
project=@variable

In this case, the value following @ represents a variable of the Terraform Cloud workspace.
° This variable must exist and must not be sensitive.

When using variable references, Ontrack will contact Terraform Cloud in order to get the values for
the referenced variables.

To this purpose, you need to define a TFC Configuration:

* go to the user menu, at TFC configurations
* Create a configuration

* Name: anything meaningful

URL: set to https://app.terraform.io by default, put something else when using Terraform
Enterprise

» Token: generate a user token in Terraform Cloud

o The mapping between the calls from the hook and the associated TFC
configuration will be based on the URL.

125

https://app.terraform.io

9.13. Monitoring

Ontrack is based on Spring Boot and exports metrics and health indicators that can be used to
monitor the status of the applications.

9.13.1. Health

The /manage/health end point provides a JSON tree which indicates the status of all connected
systems: JIRA, Jenkins, Git repositories, etc.

Note than an administrator can have access to this information as a dashboard in the Admin
console (accessible through the user menu).

9.13.2. Metrics

Since version 2.35 / 3.35, Ontrack uses the Micrometer framework to manage
A metrics, in order to allow a better integration with Spring Boot 2.

See [appendix-metrics-migration] for information about the migration.
See Metrics for the different options for the metrics backends.

List of metrics

The list of Ontrack specific metrics and their tags and values is available using the
/manage/ontrack_metrics endpoint. Note that this endpoint needs authentication
and some administrator privileges.

General metrics:
» ontrack_error (counter) - number of error (the type tag contains the type of error)
Statistics about the objects stored by Ontrack:

» ontrack_entity_project_total (gauge) - total number of projects
 ontrack_entity_branch_total (gauge) - total number of branches

* ontrack_entity_build_total (gauge) - total number of builds

» ontrack_entity_promotionLevel_total (gauge) - total number of promotion levels

* ontrack_entity_promotionRun_total (gauge) - total number of promotion runs

» ontrack_entity_validationStamp_total (gauge) - total number of validation stamps

» ontrack_entity_validationRun_total (gauge) - total number of validation runs

» ontrack_entity_validationRunStatus_total (gauge) - total number of validation run statuses
* ontrack_entity_property_total (gauge) - total number of properties

» ontrack_entity_event_total (gauge) - total number of events

126

http://projects.spring.io/spring-boot
http://micrometer.io/
http://projects.spring.io/spring-boot/

General metrics about jobs:

» ontrack_job_count_total (gauge) - total number of jobs

» ontrack_job_running_total (gauge) - total number of running jobs

* ontrack_job_error_total (gauge) - total number of jobs in error

* ontrack_job_timeout_total (gauge) - total number of jobs in timeout

» ontrack_job_paused_total (gauge) - total number of paused jobs

» ontrack_job_disabled_total (gauge) - total number of disabled jobs

* ontrack_job_invalid_total (gauge) - total number of invalid jobs

» ontrack_job_error_count_total (gauge) - total number of errors among all the jobs

* ontrack_job_timeout_count_total (gauge) - total number of timeouts among all the jobs
Information about individual jobs:

» ontrack_job_duration_ms (timer) - duration of the execution of the job
* ontrack_job_run_count (counter) - number of times a job has run

* ontrack_job_errors (counter) - number of errors for this job

Job metrics have the following tags:

o * job-category - category of the job
* job-type - type of the job

Run information:

e ontrack _run_build_time_seconds (timer) - duration of a run for a build. It is associated with
project and branch tags.

e ontrack_run_validation_run_time_seconds (timer) - duration of a run for a validation run. It is
associated with project, branch, validation_stamp and status tags.

More details at [run-info].
Information about connectors (Jenkins, JIRA, Git, etc.):

* ontrack_connector_count (gauge) - number of connectors
* ontrack_connector_up (gauge) - number of UP connectors

* ontrack_connector_down (gauge) - number of DOWN connectors

o Connector metrics have the following tags:

* type - type of connector (like jenkins, jira, ...)

Information about the execution times of event listeners:

» ontrack_event_listener_time (timer) - duration for the synchronous processing of an event on

127

the backend. The eventListener tag contains the FQCN of the event listener service.
Information about the connectivity of remote Git operations:

* ontrack_git_connect_retries - Number of retries on connection errors

* ontrack_git_connect_errors -Number of terminal connection errors

Information about the delivery, see Delivery metrics.

9.14. Encryption service

Secrets used by Ontrack are encrypted using keys managed by a ConfidentialStore.
Ontrack provides three types of storage:

« file based storage (default)
» Vault storage

» database storage

If needed, you can also create your own form of storage using extensions.

9.14.1. Selection of the confidential store

The selection of the confidential store is done at startup time using the ontrack.config.key-
storeconfiguration property.

It defaults to file (see below).

Additional configuration properties might be needed according to the type of store.

9.14.2. File confidential store

This is the default store but its selection can be made explicit by setting the ontrack.config.key-
storeconfiguration property to file.

This store will store the keys in theworking directory under the security/secrets subfolder.

A master.key file is used to encrypt the individual keys themselves, so two files will be typically
present:

* master.key

* net.nemerosa.ontrack.security.EncryptionServiceImpl.encryption

9.14.3. Secret confidential store

128

https://www.vaultproject.io/

The secret confidential store is particularly well suited for a Kubernetes
deployment of Ontrack, where a K8S secret is mapped to a volume mounted in the
o Ontrack pod.

See the Ontrack chart for more details.

This store is read-only and provides a unique key.

The configuration of this store looks like:

ontrack.config.key-store = secret
ontrack.config.file-key-store.directory = <path>
Alternatively, the following environment variables can be set:

o ONTRACK_CONFIG_KEY_STORE = secret ONTRACK_CONFIG_FILE_KEY_STORE_DIRECTORY =
<path>

<path> is the path to a directory which:

* must exist
e must contain the net.nemerosa.ontrack.security.EncryptionServiceImpl.encryption file

¢ this file must exist and must be readable

The content of this file is the key used for the encryption of the credentials in Ontrack. It can be
generated using:

openssl rand 256 > net.nemerosa.ontrack.security.EncryptionServiceImpl.encryption

9.14.4. JDBC confidential store

This store manages the keys directly in the Ontrack database. It can be selected by setting the
ontrack.config.key-storeconfiguration property to jdbc.

No further configuration is needed.

9.14.5. Vault confidential store

By setting the ontrack.config.key-storeconfiguration property to vault, Ontrack will use Vault to
store its encryption keys.

Following configuration properties are available to configure the connection to Vault:

Property Default Description
ontrack.config.vault.uri http://localhost:8200 URI to the Vault end point
ontrack.config.vault.token test Token authentication

129

https://github.com/nemerosa/ontrack-chart
https://www.vaultproject.io/
http://localhost:8200

Property Default Description

ontrack.config.vault.prefix secret/ontrack/key Path prefix for the storage of
the keys

WARNING: As of now, the
support for Vault storage is
experimental and is subject to
change in later releases. In
particular, the authentication
mechanism might change.

9.14.6. Migrating encryption keys

In the event you want to migrate the encryption keys from one type of storage to another, follow
this procedure.

In the procedure below, ${ONTRACK_URL} designates the Ontrack URL and
o ${ONTRACK_ADMIN USER} the name of an Ontrack user which has the ADMINISTRATOR
role.

Using the initial configuration for the store, start by exporting the key:

curl ${ONTRACK_URL}/admin/encryption \
--user ${ONTRACK_ADMIN_USER} \
--output ontrack.key

This command will export the encryption key into the local ontrack/key file.

Start Ontrack using the new configuration.

g There might be errors are startup, when some jobsstart to collect some data from
the external applications. Those errors can be safely ignored for now.

Import the key file into Ontrack:

curl ${ONTRACK_URL}/admin/encryption \
--user ${ONTRACK_ADMIN_USER} \
-X PUT \
-H "Content-Type: text/plain” \
--data @ontrack.key

Restart Ontrack.

9.14.7. Losing the encryption keys

In case you lose the encryption keys, the consequence will be that the secrets stored by Ontrack

130

won’t be able to be decrypted. This will typically make the external applications your Ontrack
instance connects to unreachable.

The only to fix this is to reenter the secrets.

é Some pages might not display correctly if some applications are not reachable.

9.14.8. Adding custom confidential store

See Extending confidential stores.

131

Chapter 10. Ontrack API
10.1. Ontrack GraphQL API

10.2. Ontrack DSL

Up to version 4.5, a Groovy DSL was shipped and published with each Ontrack release.

This has changed since version 4.6:

Version DSL

4.5 DSL is still published in the Maven Central and
maintained

4.6 DSL is no longer published, but old versions

should still be compatible with 4.x

5x The DSL code is gone from Ontrack and no
backward compatibility is insured any longer.

To replace the Ontrack DSL, several alternatives are possible:

* direct calls to the GraphQL API
* using the Ontrack CLI
* using the Jenkins Ontrack pipeline library

* using GitHub ingestion

132

https://github.com/nemerosa/ontrack-cli
https://github.com/nemerosa/ontrack-jenkins-cli-pipeline

Chapter 11. Administration
11.1. Accounts management

11.2. Management end points

The overall health of the Ontrack system can be accessed in the user menu under System health:

« it displays the status of the components Ontrack needs to work properly

 and all the connections that Ontrack holds for projects

home

System health

Status of Ontrack system and configured resources
@ Health
@ components
db we

{"database":"PostgresqQL","validationQuery":"isvalid()"}

diskSpace we
{"total":83067539456," free": 73671602176, " threshold": 10485760, "exists" : true}

elasticsearchRest UP @

{"cluster_name":"docker-cluster","status":"yellow","timed_out":false,"number_of_nodes":1,"number_of_data_nodes":1,"active_primary_shards":10,"active_shards":10,"relocating_shards":@,"initializin
g_shards":0,"unassigned_shards":10,"delayed_unassigned_shards":0, "number_of_pending_tasks":0, "number_of_in_flight_fetch":@,"task_max_waiting_in_queue_millis":0,"active_shards_percent_as_number":

50}
ping wre
@ Connectors 100 % (1/1)
Type Name Connection Status Time Error
github github.com https://github.com our May 1,2021 1:44 PM

11.2.1. REST info

The /rest/info REST end point returns basic information:

133

{

" self": "/rest/info/",

"version": {
"date": "2021-04-29T11:15:20.2717571",
"display": "4.0-beta.28",
"full": "release-4.0-beta-0062120",
"branch": "release-4.0-beta",
"build": "0062120",
"commit": "006212063f9ad62bb52cb24f675f2fafeb83d12b",
"source": "release/4.0-beta",
"sourceType": "release"

H
"extensionList": {
"extensions": [

{

"id": "oidc",
"name": "0IDC",
"description": "Support for OIDC authentication",
"version": "4.0-beta.28",
"options": {

"qui": true,

"dependencies": [

"casc"

11.2.2. Actuator end points
Ontrack exposes Spring Boot actuator end points:

» over HTTP (JMX is disabled)
* port 8800

* on /manage context path

o The management port can be configured using the default management.server.port
system property or MANAGEMENT_SERVER_PORT environment variable.

The management end points authentication is disabled by default in Ontrack, so
make sure the chosen port (8800 by default) is not exposed unnecessarily or enable
° authentication.

Check the Spring Boot documentation for more information.

The following end points are exposed by default:

134

» /manage/health - health of Ontrack and its components
» /manage/info - basic information about the Ontrack instance

» /manage/prometheus - exposes environment metrics for being consumed by Prometheus
Additionally, custom management end points are available:

» /manage/influxdb - if InfluxDB integration is enabled. The GET method returns the status of the
connection between Ontrack and InfluxDB, and the POST method forces a reconnection. See
InfluxDB metrics for more information.

* /manage/connectors - the connectors are used to connect to external systems like Jenkins, JIRA,
Git repositories, etc. The manage/connectors end point allows an administrator to get information
about the state of those connectors.

» /manage/account - POST method to reset the password of a given account by name, for example:

POST /manage/account

"username": "admin",
"password": "new-password"

This returns true or false to show the success of the operation.

135

Chapter 12. Development

12.1. Developing tests
12.1.1. Integration tests

12.1.2. Database integration tests

While the vast majority of tests might never need to interact directly with the database, some tests
may need a direct JDBC access to it.

For example, for a migration test, we cannot use the normal API to insert test records into the
database, since the API is already up-to-date. A typical scenario would be then:

1. insert some records into the database using JDBC
2. run the migration

3. use the API to check everything is OK
For the rest, this type of test will be coded as any other integration test.

To run JDBC statements directly, use the jdbcTemplate property or the named]dbcTemplate one, made
available by the AbstractITTestJUnit4Support class or one of its subclass.

Example: GitHubConfigurationTokenMigrationIT

136

Chapter 13. Architecture

13.1. Modules

extension-support

T ui-graphg|

v

- - service T repository-impl

extension-api repository T repository-support

L]
model
L]

L1
commaon
]

o Not all modules nor links are shown here in order to keep some clarity. The Gradle
build files in the source remain the main source of authority.

Modules are used in ontrack for two purposes:

e jsolation

* distribution
We distinguish also between:

e core modules

137

¢ extension modules

Extension modules rely on the extension-support module to be compiled and tested. The link
between the core modules and the extensions is done through the extension-api module, visible by
the two worlds.

Modules like common, json, tx or client are purely utilitarian (actually, they could be extracted from
ontrack itself).

The main core module is the model one, which defines both the API of the Ontrack services and the
domain model.

13.2. Ul

13.2.1. Resources

The UI is realized by REST controllers. They manipulate the model and get access to it through
services.

In the end, the controllers return model objects that must be decorated by links in order to achieve
Hateoas.

The controllers are not directly responsible for the decoration of the model objects as resources
(model + links). This is instead the responsibility of the resource decorators.

The model objects are not returned as such, often their content needs to be filtered out. For
example, when getting a list of branches for a project, we do not want each project to bring along its
own copy of the project object. This is achieved using the model filtering technics.

13.2.2. Resource decorators

TODO

13.3. Forms

Simple input forms do not need a lot of effort to design in Ontrack. They can be used directly in
pages or in modal dialogs.

Server components (controllers, services, ...) are creating instances of the Form object and the client
libraries (service.form. js) is responsible for their rendering:

138

|
GET form :
i
|
I

Creates Form object

<

form

I
i Renders the form

i
"PUT/POST JSON
i

-

Client Senver

Form object

The Form object is created by adding Field's into it using its ‘with method:

import net.nemerosa.ontrack.model.form.Form;
public Form getMyForm() {
return Form.create()
Wwith(field1)
with(field2)

I

See the next section on how to create the field objects. The Form object contains utility methods for
common fields:

Form.create()
// ‘name‘ text field (40 chars max), with "Name" as a label
// constrained by the ‘[A-Za-z0-9_\.\-]+' regular expression
// Suitable for most name fields on the Ontrack model objects
// (projects, branches, etc.)
.name()
// ‘password‘ password field (4@ chars max) with "Password" as a label
.password()
// ‘description‘ memo field (500 chars max), optional, with "Description"
// as a label
.description()
// ‘dateTime"' date/time field (see below) with "Date/time" as a label
.dateTime()
/] ...

.
I

In order to fill the fields with actual values, you can either use the value(::-) method on the field
object (see next section) or use the fill(::-) method on the Form object.

139

Map<String, 7> data = ...

Form.create()
/] ...
// Sets ‘value' as the value of the field with name "fieldName"
.fil1("fieldName", value)
// Sets all values in the map using the key as the field name
.fill(data)

Fields

Common field properties

Property Method Default value Description

name of () required Mapping

label label(:-+) none Display name

required optional() true Is the input required?
readOnly readOnly() false Is the input read-only?
validation validation(-") none Message to display is

the field content is
deemed invalid

help help(:+) none Help message to display
for the field (see below
for special syntax)

visiblelf visibleIf(::) none Expression which
defines if the field is
displayed or not - see
below for a detailed

explanation

value value(:) none Value to associated
with the field

help property

TODO

visibleIf property

TODO

text field

The text field is a single line text entry field, mapped to the HTML <input type="test"/> form field.

Name

140

Property Method Default value Description

length length(::") 300 Maximum length for
the text

regex regex(:+) ¥ The text must comply
with this regex in order
to be valid

Example:

Form.create()
.with(
Text.of("name")
.label("Name")
.length(40)
.regex("[A-Za-z0-9_\\.\\-]+")
.validation("Name is required and must contain only alpha-numeric characters,
underscores, points or dashes.")

)

password field

TODO

memo field

TODO

email field

TODO

url field

TODO

namedEntries field

Multiple list of name/value fields:

List of links Home http://nemerosa.github.io/ontrack/
GitHub https://github.com/nemerosa/ontrack
Name Link

List of links associated with a name.

141

The user can:

e add / remove entries in the list

» set a name and a value for each item

* the name might be optional - the value is not

Property

namelabel

valuelabel

nameRequired

addText

Example:

Form.create()

with(

Method
namelabel(::+)

valuelabel(:)

nameOptional()

addText(:)

NamedEntries.of("1links")
.label("List of 1links")
.nameLabel("Name")
.valuelabel("Link")
.nameOptional()
.addText("Add a 1link")
.help("List of links associated with a name.")
.value(value != null ? value.getLinks() : Collections.emptyList())

date field

TODO

yesno field

TODO

dateTime field

TODO

int field

TODO

142

Default value

"Name”

"Value"

true

"Add an entry"

Description

Label for the "name"
input part of an entry.

Label for the "value"
input part of an entry.

If the name part is
required.

Label for the "add"
button.

selection field

TODO

multi-strings field

TODO

multi-selection field

TODO

multi-form field

TODO

Creating your custom fields

TODO

Form usage on the client

TODO

Fields rendering

TODO

13.4. Model

143

Chapter 14. Concepts

The root entity in Ontrack is the project.

Project

wWalidation run

Promotion run

Promotion |evel Run info | Validation run status Walidation stamp

L e

Several branches can be attached to a project. Builds can be created within a branch and linked to
other builds (same or other branches).

Promotion levels and validation stamps are attached to a branch:

* a promotion level is used to define the promotion a given build has reached. A promotion run
defines this association.

* a validation stamp is used to qualify some tests or other validations on a build. A validation run
defines this association. There can be several runs per build and per validation stamp. A run
itself has a sequence of statuses attached to it: passed, failed, investigated, etc.

Builds and validation runs can be attached to some "run info" which gives additional information
like the duration of the build or the validation.

Branches, promotion levels and validation stamps define the static structure of a project.

14.1. Model filtering

TODO

144

14.1.1. Jobs
Ontrack makes a heavy use of jobs in order to schedule regular activities, like:

* SCM indexation (for Git repositories for example)
* SCM/build synchronisations
* Branch templating synchronisation
. etc.
Services and extensions are responsible for providing Ontrack with the list of jobs they want to be

executed. They do this by implementing the JobProvider interface that simply returns a collection of
“JobRegistration 's to register at startup.

One component can also register a JobOrchestratorSupplier, which provides also a stream of
"JobRegistration's, but is more dynamic since the list of jobs to register will be determined
regularly.

The job scheduler is in charge to collect all registered jobs and to run them all.

Job architecture overview

This section explains the underlying concepts behind running the jobs in Ontrack.

When a job is registered, it is associated with a schedule. This schedule is dynamic and can be
changed with the time. For example, the indexation of a Git repository for a project is scheduled
every 30 minutes, but then, is changed to 60 minutes. The job registration schedule is then changed
to every 60 minutes.

A job provides the following key elements:

* a unique identifier: the job key

 atask to run, provided as a JobRun interface:

@Functionallnterface
public interface JobRun {
void run(JobRunListener runlistener);

}

G The task defined by the job can use the provided JobRunListener to provide
- feedback on the execution or to execution messages.

The job task is wrapped into a Runnable which is responsible to collect statistics about the job
execution, like number of runs, durations, etc.

In the end, the JobScheduler can be associated with a JobDecorator to return another Runnable layer
if needed.

The job scheduler is responsible to orchestrate the jobs. The list of jobs is maintained in memory

145

using an index associating the job itself, its schedule and its current scheduled task (as a
ScheduledFuture).

Job registration

A JobRegistration is the associated of a Job and of Schedule (run frequency for the job).

A Schedule can be built in several ways:

// Registration only, no schedule
Schedule.NONE

// Every 15 minutes, starting now
Schedule.everyMinutes(15)

// Every minute, starting now
Schedule.EVERY_MINUTE

// Every day, starting now

Schedule.EVERY_DAY

// Every 15 minutes, starting after 5 minutes
Schedule.everyMinutes(15).after(5)

O see the Schedule class for more options.
w

By enabling the scattering options, one can control the schedule by adding a startup delay at the
beginning of the job.

The Job interface must define the unique for the job. A key in unique within a type within a
category.

Typically, the category and the type will be fixed (constants) while the key will depend on the job
parameters and context. For example:

JobCategory CATEGORY = JobCategory.of("category").withName("My category");
JobType TYPE = CATEGORY.getType("type").withName("My type");
public JobKey getKey() {
return TYPE.getKey("my-id")
}

The Job provides also a description, and the desired state of the job:

* disabled or not - might depend on the job parameters and context

* valid or not - when a job becomes invalid, it is not executed, and will be unregistered
automatically. For example, a Git indexation job might become invalid if the associated
repository configuration has been deleted.

Finally, of course, the job must provide the task to actually execute:

146

public JobRun getTask() {
return (JobRunListener listener) -> ...

}

The task takes as parameter a JobRunListener.

All job tasks run with administrator privileges. Job tasks can throw runtime
exceptions - they will be caught by the job scheduler and displayed in the
administration console.

14.1.2. Encryption

Ontrack will store secrets, typically passwords and tokens, together with the configurations needed
to connect to external applications: Git, JIRA, etc.

In order to protect the integrity of those external applications, those secrets must be protected.

Ontrack does so by encrypting those secrets in the database, using the AES128 algorithm. The
EncryptionService is used for encryption.

The key needed for the encryption is stored and retrieved using a ConfidentialStore service.

147

Services

Q 0
EncryptionService ConfidentialStore
: Initialisation F

Y

)
new(ConfidentialStore)

-

ER 5| CryptoConfidentialkey

I Key name: ; ;) ;
:l net.nemerosa.ontrack.security.EncryptionServicelmpl.encryption

load(key)

e
>

=
=

i
I

!

key i
|

|

alt [If key does not exist yet] !

|
|

| generates random sequence _
T 3=

< random bytes !

| stores key I

.
I =

stores internal key

' encryptisegret)

Y

T
I
I
I
I
I
:
: : Encryption F
I
I
i
I
I
i
I

encrypts with internal key}

_ encrypted
<

encrypte

Decription

' decryptlengrypted)

|
i
|
|
|
|
|
| I 8
|
|
|
|
|
|

decrypts with internal key

Eal
|
|
i
|
|
i

< decrypted

|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
i
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
i
secret i
|
i

EncryptionService ‘ CryptoConfidentialkey ConfidentialStore

See Encryption service for more details about using a confidential store.

14.2. Build filters

The build filters are responsible for the filtering of builds when listing them for a branch.

14.2.1. Usage

By default, only the last 10 builds are shown for a branch, but a user can choose to create filters for
a branch, and to select them.

The filters he creates are saved for later use: * locally, in its local browser storage * remotely, on the
server, if he is connected

For a given branch, a filter is identified by a name. The list of available filters for a branch is
composed of those stored locally and of those returned by the server. The later ones have priority
when there is a name conflict.

148

14.2.2. Implementation

The BuildFilter interface defines how to use a filter. This filter takes as parameters:

e the current list of filtered builds
¢ the branch

e the build to filter
It returns two boolean results:

¢ is the build to be kept in the list?

» do we need to go on with looking for other builds?

The BuildFilterService is used to manage the build filters:

* by creating BuildFilter instances

* by managing BuildFilterResource instances

The service determines the type of BuildFilter by wusing its type, and wuses injected

"BuildFilterProvider 's to get an actual instance.

14.2.3. Reference services

g This is a work in progress and this list is not exhaustive yet. In the meantime, the
best source of information remains the source code...

Service

StructureService
SecurityService
PropertyService

EntityDataService

EntityDataStore

EntityDataStore

Description

Access to projects, branches and all entities
Checks the current context for authorizations
Access to the properties of the entities

This service allows to store and retrieve
arbitrary data with entities

This service allows to store audited and indexed
data with entities. See EntityDataStore for more
information.

The EntityDataStore is a service which allows extensions to store some data associated with entities

with the following properties:

data stored as JSON

» data always associated with an entity

» grouping of data using a group ID

indexation by category and name, not necessarily unique

149

https://github.com/nemerosa/ontrack

* unique generated numeric ID

* audit data - creation + updates

See the Javadoc for net.nemerosa.ontrack.repository.support.store.EntityDataStore for more
details.

Example:

@Autowired

EntityDataStore store;
@Autowired

SecurityService securityService;

Branch branch = ...

store.add(branch, "Category", "Name", securityService.getCurrentSignature(), null,
json);

14.3. Technology

14.3.1. Client side
One page only, pure AJAX communication between the client and the server.

* Angular]S

* Angular UI Router

* Angular UI Bootstrap
* Bootstrap

e Less

14.3.2. Server side

» Spring Boot for the packaging & deployment
» Spring MVC for the REST API

* Spring for the IoC

* Spring Security & AOP for the security layer

Plain JDBC for the data storage

H2 in MySQL mode for the database engine

14.3.3. Layers

150

Client W] Service Repository I_O
Database F{esml,lrces

| REST | | |
3 |
|
i

——
I _—

| |
| | >

i
i i | I
Client l Ul I Service l Repository l DatEabase Resources

|

151

Chapter 15. Extending Ontrack

Ontrack allows extensions to contribute to the application, and actually, most of the core features,
like Git change logs, are indeed extensions.

This page explains how to create your own extensions and to deploy them along Ontrack. The same
coding principles apply also for coding core extensions and to package them in the main
application.

Having the possibility to have external extensions in Ontrack is very new and the

A way to provide them is likely to change (a bit) in the next versions. In particular,
the extension mechanism does not provide classpath isolation between the
"plugins”.

15.1. Preparing an extension

In order to create an extension, you have to create a Java project.

(;) The use of Kotlin is also possible.

Note that Ontrack needs at least a JDK 11.0.6 to run.

Your extension needs to a Gradle project and have at least this minimal build.gradle file:

e Maven might be supported in the future.

buildscript {
repositories {
mavenCentral()
}
dependencies {
classpath 'net.nemerosa.ontrack:ontrack-extension-plugin:{{ontrack-version}}'

}
}
repositories {
mavenCentral()
}

apply plugin: 'ontrack'

The buildscript section declares the version of Ontrack you’re building your extension for.
o The repository declaration might be simplified in later versions.

The plug-in must declare the Maven Central as repository for the dependencies (Ontrack libraries
are published in the Maven Central).

Finally, you can apply the ontrack plug-in. This one will:

152

* apply the java plug-in. If you want to use Groovy, youwll have to apply this plug-in yourself.
Kotlin is very well supported.

* add the ontrack-extension-support module to the compile configuration of your extension

* define some tasks used for running, testing and packaging your extension (see later)

15.2. Extension ID

Your extension must be associated with an identifier, which will be used throughout all the
extension mechanism of Ontrack.

If the name of your extension project looks like ontrack-extension-<xxx>, the xxx will be ID of your
extension. For example, in the settings.gradle file:

rootProject.name = 'ontrack-extension-myextension'

then myextension is your extension ID.
If for any reason, you do not want to use ontrack-extension- as a prefix for your extension name,

you must specify it using the ontrack Gradle extension in the build.gradle file:

ontrack {
id 'myextension’

15.3. Coding an extension

All your code must belong to a package starting with net.nemerosa.ontrack in order to be visible by
the Ontrack application.

Typically, this should be like: net.nemerosa.ontrack.extension.<id> where id is the ID of your
extension.

o This limitation about the package name is likely to removed in future versions of
Ontrack.

You now must declare your extension to Ontrack by creating an extension feature class:

153

package net.nemerosa.ontrack.extension.myextension;

import net.nemerosa.ontrack.extension.support.AbstractExtensionFeature;
import net.nemerosa.ontrack.model.extension.ExtensionFeatureOptions;
import org.springframework.stereotype.Component;

@Component
public class MyExtensionFeature extends AbstractExtensionFeature {
public MyExtensionFeature() {
super (
"myextension",
"My extension",
"Sample extension for Ontrack",
ExtensionFeatureOptions.DEFAULT
)i

The @Component annotation makes this extension feature visible by Ontrack.
The arguments for the extension feature constructor are:

¢ the extension ID

the display name
* a short description

* the extension options (see below)

15.4. Extension options

If your extension has some web components (templates, pages, etc.), it must declare this fact:
ExtensionFeatureOptions.DEFAULT.withGui(true)

If your extension depends on other extensions, it must declare them. For example, to depend on
GitHub and SCM extensions, first declare them as dependencies in the build.gradle:

ontrack {
uses 'github’
uses 'scm'

}

then, in your code:

154

@Component
public class MyExtensionFeature extends AbstractExtensionFeature {
@Autowired
public MyExtensionFeature(
GitHubExtensionFeature gitHubExtensionFeature,
SCMExtensionFeature scmExtensionFeature
) {
super (
"myextension”,
"My extension",
"Sample extension for Ontrack",
ExtensionFeatureOptions.DEFAULT
.withDependency(gitHubExtensionFeature)
.withDependency(scmExtensionFeature)

)

15.5. Writing tests for your extension

Additionally to creating unit tests for your extension, you can also write integration tests, which
will run with the Ontrack runtime enabled.

e This feature is only available starting from version 2.23.1.

When the ontrack-extension-plugin is applied to your code, it makes the ontrack-it-utils module
available for the compilation of your tests.

In particular, this allows you to create integration tests which inherit from
AbstractServiceTestJUnit4Support, to inject directly the Ontrack services you need and to use utility
methods to create a test environment.

For example:

public MyTest extends AbstractServiceTestSupport {
@Autowired
private StructureService structureService
@Test
public void sample_test() {
// Creates a project
Project p = doCreateProject();
// Can retrieve it by name...
asUser().withView(p).execute(() ->
assertTrue(structureService.findProjectByName(p.getName()).isPresent())

)i

155

15.6. List of extension points

Ontrack provides the following extension points:

* Properties - allows to attach a property to an entity

* Decorators - allows to display a decoration for an entity

* User menu action - allows to add an entry in the connected user menu

» Settings - allows to add an entry in the global settings

» Metrics - allows to contribute to the metrics exported by Ontrack

* Event types - allows to define additional event types.

* GraphQL - allows contributions to the GraphQL Ontrack schema.

* Encryption key store - allows to define a custom store for the encryption keys.

» TODO Entity action - allows to add an action for the page of an entity

* TODO Entity information - allows to add some information into the page of an entity
* TODO Search extension - provides a search end point for global text based searches
* TODO Issue service - provides support for a ticketing system

* TODO SCM service - provides support for a SCM system

* TODO Account management action - allows to add an action into the account management
Other topics:

* Creating pages
* TODO Creating services

* TODO Creating jobs

See Reference services for a list of the core Ontrack services.

15.7. Running an extension

A Postgres database must be available to run an extension, since it is needed by

o Ontrack.

See the development section to see how quickly set it up.

15.7.1. Using Gradle

To run your extension using Gradle:
./gradlew ontrackRun

This will make the application available at http://localhost:8080

156

http://localhost:8080

The ontrackRun Gradle task can be run directly from Intellij IDEA and if necessary in debug mode.

When running with Gradle in your IDE, if you edit some web resources and want
O your changes available in the browser, just rebuild your project (Ctrl F9 in Intellij)
et and refresh your browser.

15.8. Packaging an extension

Just run:
./gradlew clean build

The extension is available as a JAR (together with its transitive dependencies, see below) in
build/dist.

15.9. Extension dependencies

If your extension depends on dependencies which are not brought by Ontrack, you have to collect
them explicitly and put them in the same directory which contain your main JAR file.

The Ontrack plug-in provides an ontrackPrepare task which copies all dependencies (transitively)
and the main JAR in the build/dist directory.

This task is called by the main build task.

15.10. Deploying an extension

15.10.1. Using the Docker image

The Ontrack Docker image uses the /var/ontrack/extensions volume to load extensions from. Bind
this volume to your host or to a data container to start putting extensions in it. For example:

docker run --volume /extension/on/host:/var/ontrack/extensions ...

You can also create your own image. Create the following Dockerfile:

Dockerfile

Base Ontrack image

FROM nemerosa/ontrack:<yourversion>

Overrides the extension directory, as to NOT use a volume
ENV EXTENSIONS_DIR /var/ontrack/your-extension

Copies the extensions in the target volume

COPY extensions/*.jar /var/ontrack/your-extension/

157

We assume here that your extensions are packaged in an extensions folder at the same level than
your Dockerfile:

/-- Dockerfile

|-- extensions/
|-- extensionl.jar
|-- extension2.jar

o When using a child Dockerfile, the extension directory has to be customized
because we cannot use the VOLUME in this case.

15.10.2. Using the CentOS or Debian/Ubuntu package

The RPM and Debian packages both use the /usr/lib/ontrack/extensions directory for the location
of the extensions JAR files.

You can also create a RPM or Debian package which embeds both Ontrack and your extensions.
The means to achieve this depend on your build technology but the idea is the same in all cases:
Your package must:
* put the extension JAR files in /usr/1lib/ontrack/extensions
* have a dependency on the ontrack package
15.10.3. In standalone mode
When running Ontrack directly, you have to set the loader.path to a directory containing the

extensions JAR files:

java -Dloader.path=/path/to/extensions -jar ... <options>

15.10.4. Extending properties

Any entity in Ontrack can be associated with a set of properties. Extensions can contribute to create
new ones.

A property is the association some Java components and a HTML template to render it on the
screen.

Java components

First, a property must be associated with some data. Just create an invariant POJO like, for example:

158

package net.nemerosa.ontrack.extension.myextension;
import lombok.Data;

@Data
public class MyProperty {
private final String value;

}

G Note that Ontrack extensions can take benefit of using Lombok in order to reduce
- the typing. But this is not mandatory as all.

Then, you create the property type itself, by implementing the PropertyType interface or more easily
by extending the AbstractPropertyType class. The parameter for this class is the data created above:

@Component

public class MyPropertyType extends AbstractPropertyType<MyProperty> {
}

The @Component notation registers the property type in Ontrack.

A property, or any extension is always associated with an extension feature and this one is typically
injected:

@Autowired
public MyPropertyType(MyExtensionFeature extensionFeature) {
super (extensionFeature);

}

Now, several methods need to be implemented:

* getName and getDescription return respectively a display name and a short description for the
property

» getSupportedEntityTypes returns the set of entities the property can be applied to. For example,
if your property can be applied only on projects, you can return:

@0verride

public Set<ProjectEntityType> getSupportedEntityTypes() {
return EnumSet.of(ProjectEntityType.PROJECT);

}

» cankdit allows you to control who can create or edit the property for an entity. The
SecurityService allows you to test the authorizations for the current user. For example, in this
sample, we authorize the edition of our property only for users being granted to the project
configuration:

159

https://projectlombok.org/

@0verride

public boolean canEdit(ProjectEntity entity, SecurityService securityService) {
return securityService.isProjectFunctionGranted(entity, ProjectConfig.class);
}

 canView allows you to control who can view the property for an entity. Like for canEdit, the
SecurityService is passed along, but you will typically return true:

@0verride

public boolean canView(ProjectEntity entity, SecurityService securityService) {
return true;

}

» getEditionForm returns the form being used to create or edit the property. Ontrack uses Form

objects to generate automatically user forms on the client. See its Javadoc for more details. In
our example, we only need a text box:

@Override

public Form getEditionForm(ProjectEntity entity, MyProperty value) {
return Form.create()

with(
Text.of("value")
.label("My value")
.length(20)
.value(value != null ? value.getValue() : null)
s

* the fromClient and fromStorage methods are used to parse back and forth the JSON into a
property value. Typically:

@0verride

public MyProperty fromClient(JsonNode node) {
return fromStorage(node);

}

@0verride

public MyProperty fromStorage(JsonNode node) {
return parse(node, ProjectCategoryProperty.class);

}

* the getSearchKey is used to provide an indexed search value for the property:

160

@Override
public String getSearchKey(My value) {
return value.getValue();

}

* finally, the replaceValue method is called when the property has to be cloned for another entity,
using a replacement function for the text values:

@0verride
public MyProperty replaceValue(MyProperty value, Function<String, String>
replacementFunction) {
return new MyProperty(
replacementFunction.apply(value.getValue())
)i
}

Web components

A HTML fragment (or template) must be created at:

src/main/resources
\-- static
\-- extension
\-- myextension
\-- property
\-- net.nemerosa.ontrack.extension.myextension.MyPropertyType.tpl.html

o Replace myextension, the package name and the property type accordingly of
course.

The tpl.html will be used as a template on the client side and will have access to the Property object.
Typically, only its value field, of the property data type, will be used.

The template is used the Angular]S template mechanism.

For example, to display the property as bold text in our sample:
{{property.value.value}}

The property must be associated with an icon, typically PNG, 24 x 24, located at:

161

https://docs.angularjs.org/guide/templates

src/main/resources
\-- static
\-- extension
\-- myextension
\-- property
\-- net.nemerosa.ontrack.extension.myextension.MyPropertyType.png

Property search

By default, properties are not searchable - their value cannot be used to perform search.
If the property contains some text, it might be suitable to allow this property to be used in search.
To enable this, two main methods must be provided:

e containsValue

* getSearchArguments

The containsValue is used to check if a given string token is present of not in an instance of a
property value. Let’s take a property data type which has a text field, we could implement the
containsValue method by checking if this field contains the search token in a case insensitive
manner:

override fun containsValue(value: MessageProperty, propertyValue: String): Boolean {
return StringUtils.containsIgnoreCase(value.text, propertyValue)

}

The getSearchArguments method is more complex - it allows the Ontrack search engine to plug some
SQL fragment into a more global search, for example like when searching for builds.

This method returns a PropertySearchArguments instance with three properties:

* jsonContext - expression to join with to the PROPERTIES table in order to contraint the JSON scope,
for example jsonb_array_elements(pp.json>"items') as item. This expression is optional.

* jsonCriteria - Criteria to act on the jsonContext defined above, based on a search token, for
example: item>>'name' = :name and item>>'value' ilike :value. This expression is optional.
Variables in this expression can be mapped to actual parameters using the criteriaParams map
parameter below.

» criteriaParams- Map of parameters for the criteria, for example: name — "name" and value -

"%value%". See the Spring Documentation for more information.

Most of the time, the jsonContext and jsonCriteria expressions will rely on the json column of the
PROPERTIES table, which is a Postgres JSONB data type containing a JSON representation of the
property data type.

Refer to the Postgres JSON documentation for more information about the syntax to use in those
expressions.

162

https://docs.spring.io/spring/docs/SPRING/spring-framework-reference/htmlsingle/#jdbc-NamedParameterJdbcTemplate
https://www.postgresql.org/docs/9.4/datatype-json.html
https://www.postgresql.org/docs/9.4/functions-json.html

o In the jsonContext and jsonCriteria expressions, the PROPERTIES table is designed
using the pp alias.

o The getSearchArguments returns a null PropertySearchArguments instance by default
- this means that any search on this property does not return anything.

Example, for a property data type having a links list of name/value strings, and we want to look in
the value field in a case insensitive way:

override fun getSearchArguments(token: String): PropertySearchArguments? {
return PropertySearchArguments(
jsonContext = "jsonb_array_elements(pp.json->'links') as link",
jsonCriteria = "link->>"'value' ilike :value",
criteriaParams = mapOf(
"value" to "%$token%

15.10.5. Extending decorators

A decorator is responsible to display a decoration (icon, text, label, etc.) close to an entity name, in
the entity page itself or in a list of those entities. Extensions can contribute to create new ones.

A decorator is the association some Java components and a HTML template to render it on the
screen.

Java components

First, a decorator must be associated with some data. You can use any type, like a String, an enum or
any other invariant POJO. In our sample, we’ll take a String, which is the value of the MyProperty
property described as example in Extending properties.

Then, you create the decorator itself, by implementing the DecorationExtension interface and
extending the AbstractExtension. The parameter type is the decorator data defined above.

@Component
public class MyDecorator extends AbstractExtension implements
DecorationExtension<String> {

}

The @Component notation registers the decorator in Ontrack.

A decorator, or any extension is always associated with an extension feature and this one is
typically injected. Other services can be injected at the same time. For example, our sample
decorator needs to get a property on an entity so we inject the PropertyService:

163

private final PropertyService propertyService;
@Autowired
public MyDecorator(MyExtensionFeature extensionFeature, PropertyService
propertyService) {
super (extensionFeature);
this.propertyService = propertyService;

Now, several methods need to be implemented:

* getScope returns the set of entities the decorator can be applied to. For example, if your
property can be applied only on projects, you can return:

@0verride

public EnumSet<ProjectEntityType> getScope() {
return EnumSet.of(ProjectEntityType.PROJECT);

}

» getDecorations returns the list of decorations for an entity. In our case, we want to return a
decoration only if the project is associated with the MyProperty property and return its value as
decoration data.

@0verride
public List<Decoration<String>> getDecorations(ProjectEntity entity) {
return propertyService.getProperty(entity, MyPropertyType.class).option()
.map(p -> Collections.singletonList(
Decoration.of(
MyDecorator.this,
p.getValue()
)
)
.orElse(Collections.emptyList());

Web components

A HTML fragment (or template) must be created at:

src/main/resources
\-- static
\-- extension
\-- myextension
\-- decoration
\-- net.nemerosa.ontrack.extension.myextension.MyDecorator.tpl.html

164

o Replace myextension, the package name and the decorator type accordingly of
course.

The tpl.html will be used as a template on the client side and will have access to the Decoration
object. Typically, only its data field, of the decoration data type, will be used.

The template is used the Angular]S template mechanism.

For example, to display the decoration data as bold text in our sample:

<!-- In this sample, ‘data‘' is a string -->
{{decoration.data}}

15.10.6. Extending the user menu

An extension can add a entry in the connected user menu, in order to point to an extension page.

Extension component

Define a component which extends AbstractExtension and implements UserMenuExtension:

package net.nemerosa.ontrack.extension.myextension;

@Component
public class MyUserMenuExtension extends AbstractExtension implements
UserMenuExtension {

@Autowired
public MyUserMenuExtension(MyExtensionFeature extensionFeature) {
super (extensionFeature);

}

@0verride
public Action getAction() {
return Action.of("my-user-menu", "My User Menu", "my-user-menu-page");

}

@0verride
public Class<? extends GlobalFunction> getGlobalFunction() {
return Projectlist.class;

}

In this sample, my-user-menu-page is the relative routing path to the page the user action must point
to.

The getGlobalFunction method returns the function needed for authorizing the user menu to
appear.

165

https://docs.angularjs.org/guide/templates

15.10.7. Extending pages

Extensions can also contribute to pages.

Extension menus

Extension pages must be accessible from a location:

* the global user menu

* an entity page

From the global user menu

TODO

From an entity page

In order for an extension to contribute to the menu of an entity page, you have to implement the
ProjectEntityActionExtension interface and extend the AbstractExtension.

@Component

public class MyProjectActionExtension extends AbstractExtension implements
ProjectEntityActionExtension {

}

The @Component notation registers the extension in Ontrack.

An action extension, or any extension is always associated with an extension feature and this one is
typically injected. Other services can be injected at the same time. For example, our sample
extension needs to get a property on an entity so we inject the PropertyService:

private final PropertyService propertyService;
@Autowired
public MyProjectActionExtension(MyExtensionFeature extensionFeature, PropertyService
propertyService) {
super (extensionFeature);
this.propertyService ==== propertyService;

The getAction method returns an optional Action for the entity. In our sample, we want to associate
an action with entity if it is a project and if it has the MyProperty property being set:

166

@0verride
public Optional<Action> getAction(ProjectEntity entity) {
if (entity instanceof Project) {
return propertyService.getProperty(entity, MyPropertyType.class).option()

.map(p ->
Action.of(
"my-action”,
"My action",
String.format("my-action/%d", entity.id())
)
)i

} else {
return Optional.empty();
}

The returned Action object has the following properties:

* an id, uniquely identifying the target page in the extension
* a name, which will be used as display name for the menu entry

* a URI fragment, which will be used for getting to the extension end point (see later). Note that
this URI fragment will be prepended by the extension path. So in our example, the final path for
the SAMPLE project with id 12 would be: extension/myextension/my-action/12.

Extension global settings

TODO

Extension page

Before an extension can serve some web components, it must be declared as being
o GUI related. See the documentation to enable this
(ExtensionFeatureOptions.DEFAULT.withGui(true)).

The extension must define an Angular]S module file at:

src/main/resources
\-- static
\-- extension
\-- myextension
\-- module.js

The module.js file name is fixed and is used by Ontrack to load the web components of your
extension at startup.

This is an Angular]S (1.2.x) module file and can declare its configuration, its services, its controllers,
etc. Ontrack uses UI Router(), version 0.2.11 for the routing of the pages, allowing a routing

167

http://angular-ui.github.io/ui-router/site

declaration as module level.

For our example, we want to declare a page for displaying information for
extension/myextension/my-action/{project} where {project} is the ID of one project:

angular.module('ontrack.extension.myextension', [
'ot.service.core',
'ot.service.structure'
D
// Routing
.config(function ($stateProvider) {
$stateProvider.state('my-action', {
url: '/extension/myextension/my-action/{project}’,
templateUrl: 'extension/myextension/my-action.tpl.html’,
controller: 'MyExtensionMyActionCtrl'
1)
b
// Controller
.controller('MyExtensionMyActionCtrl', function ($scope, $stateParams, ot,
otStructureService) {
var projectId ==== $stateParams.project;

// View definition

var view ==== ot.view();

view.commands ====
// Closing to the project
ot.viewCloseCommand('/project/' + projectId)

1;

// Loads the project
otStructureService.getProject(projectId).then(function (project) {
// Breadcrumbs

view.breadcrumbs ==== ot.projectBreadcrumbs(project);
// Title

view.title ==== "Project action for " + project.name;
// Scope

$scope.project ==== project;

b
b

The routing configuration declares that the end point at /extension/myextension/my-
action/{project} will use the extension/myextension/my-action.tpl.html view and the
MyExtensionMyActionCtr1 controller defined below.

The ot and otStructureService are Ontrack Angular services, defined respectively by the
ot.service.core and ot.service.structure modules.

The MyExtensionMyActionCtrl controller:

168

 gets the project ID from the state (URI) definition
* it defines an Ontrack view, and defines a close command to go back to the project page
* it then loads the project using the otStructureService service and upon loading completes some

information into the view

Finally, we define a template at:

src/main/resources
\-- static
\-- extension
\-- myextension
\-- extension/myextension/my-action.tpl.html

which contains:

<ot-view>
Action page for {{project.name}}.
</ot-view>

The ot-view is an Ontrack directive which does all the layout magic for you. You just have to
provide the content.

Ontrack is using Bootstrap 3.x for the layout and basic styling, so you can start structuring your
HTML with columns, rows, tables, etc. For example:

<ot-view>
<div class="row">
<div class="col-md-12">
Action page for {{project.name}}.
</div>
</div>
</ot-view>

Extension API

TODO

Extension API resource decorators

TODO

15.10.8. Extending event types

Extensions can define additional event types which can then be used to add custom events to
entities.

169

http://getbootstrap.com/

To register a custom event type:

@Autowired
public static final EventType CUSTOM_TYPE = SimpleEventType.of("custom-type", "My
custom event");
public MyExtension(..., EventFactory eventFactory) {
super (extensionFeature);
eventFactory.register (CUSTOM_TYPE);

Then, you can use it this way when you want to attach an event to, let’s say, a build:

EventPostService eventPostService;
Build build;

eventPostService.post(
Event.of (MyExtension.CUSTOM_TYPE).withBuild(build).get()
)i

15.10.9. Extending validation data

If built-in validation data types are not enough, additional ones can be created using the extension
mechanism.

To register a custom validation data type:

1. implement a component implementing the ValidationDataType interface or preferably the
AbstractValidationDataType class (which provides some utility validation methods)

2. looks at the Javadoc of the ValidationDataType interface to get the list of methods to implement
and some guides

The main choice to consider is about the configuration data type (C) and the data type (7).

The data type is the type of the data you actually associate with a validation run. For example, for
some code coverage, it would be a percentage, and therefore represented as an Int. It could be any
other type, either complex or simple.

The configuration data type is responsible for the configuration of the validation stamp, how the
actual data will be interpreted when it comes to computing a status. It could be one or several
thresholds for example.

o The best thing to get started would be to copy the code of existing built-in data
types.

15.10.10. Extending GraphQL

Extensions can contribute to the Ontrack GraphQL core schema:

170

* custom types
* root queries

 additional fields in project entities
Preparing the extension
In your extension module, import the ontrack-ui-graphql module:

dependencies {
compile "net.nemerosa.ontrack:ontrack-ui-graphql:${ontrackVersion}"

}

If you want to write integration tests for your GraphQL extension, you have to include the GraphQL

testing utilities:

dependencies {
testCompile "net.nemerosa.ontrack:ontrack-ui-graphql:${ontrackVersion}:tests"

}

Custom types

To define an extra type, you create a component which implements the GQLType interface:

@Component
public class PersonType implements GQLType {
@0verride
public GraphQLObjectType getType() {
return GraphQLObjectType.newObject()
.name("Person")
.field(f -> f.name("name")
.description("Name of the person")
.type(GraphQLString)
)
.build();

@ See the graphgl-java documentation for the description of the type construction.

You can use this component in other ones, like in queries, field definitions or other types, like

shown below:

171

https://github.com/graphql-java/graphql-java

@Component
public class AccountType implements GQLType {

private final PersonType personType;

@Autowired

public AccountType (PersonType personType) {
this.personType = personType;

}

@lverride
public GraphQLObjectType getType() {
return GraphQLObjectType.newObject()

.name("Account")

.field(f -> f.name("username")
.description("Account name")
.type(GraphQLString)

)

.field(f -> f.name("identity")
.description("Identity")
.type(personType.getType())

)

.build();

You can also create GraphQL types dynamically by using introspection of your model classes.

Given the following model:

@Data

public class Person {
private final String name;

}

@Data

public class Account {
private final String username;
private final Person identity;

}

You can generate the Account type by using:

@0verride
public GraphQLObjectType getType() {
return GraphQLBeanConverter.asObjectType(Account.class);

}

172

The GraphQLBeanConverter.asObjectType is still very experimental and its
° implementation is likely to change in the next versions of Ontrack. For example,
Map and Collection types are not supported.

Root queries

Your extension can contribute to the root query by creating a component implementing the
GQLRootQuery interface:

@Component
public class AccountGraphQLRootQuery implements GQLRootQuery {

private final AccountType accountType;

@Autowired
public AccountGraphQLRootQuery(AccountType accountType) {
this.accountType = accountType;

}

@0verride
public GraphQLFieldDefinition getFieldDefinition() {
return GraphQLFieldDefinition.newFieldDefinition()

.name("accounts")

.argument(a -> a.name("username")
.description("User name pattern")
.type(GraphQLString)

)

.type(accountType.getType())

.dataFetcher(...)

.build();

This root query can then be used into your GraphQL queries:

accounts(username: "admin*") {
username
identity {
name

}

Extra fields

The Ontrack GraphQL extension mechanism allows contributions to the project entities like the
projects, builds, etc.

173

For example, to contribute a owner field of type Account on the Branch project entity:

@Component
public class BranchOwnerGraphQLFieldContributor
implements GQLProjectEntityFieldContributor {

private final AccountType accountType;

@Autowired
public BranchOwnerGraphQLFieldContributor(AccountType accountType) {
this.accountType = accountType;

}

@0verride
public List<GraphQLFieldDefinition> getFields(
Class<? extends ProjectEntity> projectEntityClass,
ProjectEntityType projectEntityType) {
return Collections.singletonlList(
GraphQLFieldDefinition.newFieldDefinition()
.name("owner")
.type(accountType.getType())
.dataFetcher(GraphqlUtils.fetcher(
Branch.class,
(environment, branch) -> return ...
)
.build()
)i

You can now use the owner field in your queries:

branches(id: 1) {
name
project {
name
}
owner {
username
identity {
name

}

174

Built-in scalar fields

The Ontrack GraphQL module adds the following scalar types, which you can use in your field or
type definitions:

* GQLScalarJSON.INSTANCE - maps to a JsonNode
* GQLScalarLocalDateTime.INSTANCE - maps to a LocalDateTime

You can use them directly in your definitions:

.field(f -> f.name("content").type(GQLScalarJSON.INSTANCE))
.field(f -> f.name("timestamp").type(GQLScalarLocalDateTime.INSTANCE))

Testing GraphQL

In your tests, create a test class which extends AbstractQLITSupport and use the run method to
execute a GraphQL query:

MyTestIT extends AbstractQLITSupport {
@Test
void my_test() {
def p = doCreateProject()
def data = run("""{
projects(id: ${p.id}) {

name
}
)
assert data.projects.first().name == p.name
}
}
@ While it is possible to run GraphQL tests in Java, it’s easier to do using Groovy.

15.10.11. Extending cache

Ontrack uses Caffeine to cache some data in memory to avoid reloading it from the database. The
cache behaviour can be configured using properties.

Extensions can also use the Ontrack cache and make it configurable.

In order to declare one or several caches, just a declare a Component which implements
CacheConfigExtension and set the Caffeine spec string for each cache.

175

https://github.com/ben-manes/caffeine
http://static.javadoc.io/com.github.ben-manes.caffeine/caffeine/2.6.0/com/github/benmanes/caffeine/cache/CaffeineSpec.html

@Component
class MyCacheConfigExtension : CacheConfigExtension {
override val caches: Map<String, String>
get() = mapOf(
"myCache" to "maximumSize=1000,expireAfterWrite=1h,recordStats"

)

0 The cache statistics are available as metrics if the recordStats flag is set.

The cache thus declared become configurable through external configuration. For example:

application.yml

ontrack:
config:
cache:
specs:
myCache: "maximumSize=2000,expireAfterWrite=1d,recordStats"

In order to use the cache in the code, you can just use the Spring cache annotations. For example:

@Service

class MyServiceImpl: MyService {
@Cacheable(cacheNames = "myCache")
fun getValue(id: Int): MyObject = ...

15.10.12. Extending metrics

There are several ways to contribute to metrics in Ontrack:

* Meter registry direct usage
e Validation run metrics
* Run info listeners

* Metrics export service

Meter registry direct usage

Starting from version 2.35/3.35, the metrics framework used by Ontrack has been

A migrated to Micrometer. This is a breaking change - and the way metrics can be
contributed to by extensions is totally different and some effort must be done in
the migration.

In order for extensions to add their own metrics, they can interact directly with an inject

176

https://docs.spring.io/spring-boot/docs/2.7.18/reference/htmlsingle/#production-ready-datasource-cache
https://docs.spring.io/spring-boot/docs/2.7.18/reference/htmlsingle/#boot-features-caching
http://micrometer.io/

MeterRegistry and then get gauges, timers, counters, etc.
Or they can create some MeterBinder beans to register some gauges at startup time.

Usually, migrating (monotonic) counters and timers will be straightforward:

val meterRegistry: MeterRegistry
meterRegistry.counter("...", tags).increment()
meterRegistry.timer("...", tags).record {

// Action to time
+

For gauge, you have to register them so that they can be call at any time by the meter registry:

val meterRegistry: MeterRegistry
meterRegistry.gauge("...", tags,

sourceObject,

{ obj -> /* Gets the gauge value from the object */ }

See the Micrometer documentation for more information on how to register metrics.

Validation run metrics

Every time a wvalidation run is created, an event is sent to all instances of
ValidationRunMetricsExtension.

You can register an extension to react to this creation:

class InfluxDBValidationRunMetricsExtension(myExtensionFeature: MyExtensionFeature) :
AbstractExtension(myExtensionFeature), ValidationRunMetricsExtension {
override fun onValidationRun(validationRun: ValidationRun) {
// Does something with the created validation run

Run info listeners

Builds and validation runs can be associated with some run info, which contain information about
the execution time, source and author.

Every time a run info is created, an event is sent to all instances of RunInfolistener. To react to
those run info events, you can also declare a @Component implementing RunInfolistener. For
example:

177

http://micrometer.io/

@Component
class MyRunInfolListener : RunInfolistener {
override fun onRunInfoCreated(runnableEntity: RunnableEntity, runInfo: RunInfo) {
// Exports the run info to an external metrics system

}

Metrics export service

The MetricsExportService can be used to export any set of metrics, to any registered metrics system.
o See Metrics for a list of supported metric backends for this feature.

To export a metric, just call the exportMetrics method on the service:

metricsExportService.exportMetrics(
"my-metric-name",
tags = mapOf(
"tag1" to "namel",
“tag2" to "name2"

),

fields = mapOf(
"valuel" to valuel,
"value2" to value?

)I

timestamp = Time.now()

o Metrics exporters must declared an extension of type MetricsExportExtension in
order to be accessible by the MetricsExportService service.

15.10.13. Using Kotlin in extensions

An extension can use Kotlin additionally to Java.
Just mention kotlin() in the Ontrack configuration in your build.gradle file:

build.gradle

ontrack {
kotlin()

The Kotlin Gradle plug-in will be automatically applied and the Kotlin JVM for JRES8, with the same
version than for Ontrack, will be added in compileOnly mode to your dependencies. Enjoy!

178

http://kotlinlang.org/

15.10.14. Extending the settings
An extension can add a entry in the list of global settings.

Start by creating an invariant class which contains the data to manage in the new settings.

(r) in the sample below, we use some PuppetDB connection settings, which need a
- URL, a user name and a password.
@Data

public class PuppetDBSettings {
private final String url;
private final String username;
private final String password;

The settings are managed in Ontrack by two distinct services:

* a manager - responsible for the edition of the settings

* a provider - responsible for retrieving the settings
o as-of today, the service cannot be the same class.

To define the manager, extend the AbstractSettingsManager class and use your settings class as a
parameter:

@Component
public class PuppetDBSettingsManager extends AbstractSettingsManager<PuppetDBSettings>
{

private final SettingsRepository settingsRepository;
private final EncryptionService encryptionService;

@Autowired
public PuppetDBSettingsManager(CachedSettingsService cachedSettingsService,
SecurityService securityService, SettingsRepository settingsRepository,
EncryptionService encryptionService) {
super (PuppetDBSettings.class, cachedSettingsService, securityService);
this.settingsRepository = settingsRepository;
this.encryptionService = encryptionService;

}

@0verride
protected void doSaveSettings(PuppetDBSettings settings) {
settingsRepository.setString(PuppetDBSettings.class, "url",
settings.getUrl());
settingsRepository.setString(PuppetDBSettings.class, "username",
settings.getUsername());

179

settingsRepository.setPassword(PuppetDBSettings.class, "password",
settings.qgetPassword(), false, encryptionService::encrypt);

}

@lverride
protected Form getSettingsForm(PuppetDBSettings settings) {
return Form.create()
with(
Text.of ("url")
.label("URL")
.help("URL to the PuppetDB server. For example:
http://puppetdb")
.value(settings.getUr1l())
)
with(
Text.of("username")
.label("User")
.help("Name of the user used to connect to the
PuppetDB server.")
.optional()
.value(settings.getUsername())
)
.with(
Password.of("password")
.label("Password")
.help("Password of the user used to connect to the
PuppetDB server.")
.optional()
.value("") // Password never sent to the client

}

@0verride
public String getId() {
return "puppetdb"”;

}

@0verride
public String getTitle() {
return "PuppetDB settings";

}

To define the provided, implement the AbstractSettingsManager and use your settings class as a
parameter:

180

@Component
public class PuppetDBSettingsProvider implements SettingsProvider<PuppetDBSettings> {

private final SettingsRepository settingsRepository;
private final EncryptionService encryptionService;

@Autowired
public PuppetDBSettingsProvider(SettingsRepository settingsRepository,
EncryptionService encryptionService) {
this.settingsRepository = settingsRepository;
this.encryptionService = encryptionService;

}

@0verride
public PuppetDBSettings getSettings() {
return new PuppetDBSettings(
settingsRepository.getString(PuppetDBSettings.class, "url", ""),
settingsRepository.getString(PuppetDBSettings.class, "username", ""),

settingsRepository.getPassword(PuppetDBSettings.class, "password", "",
encryptionService::decrypt)
)i
}

@0verride

public Class<PuppetDBSettings> getSettingsClass() {
return PuppetDBSettings.class;

}

That’s all there is to do. Now, the new settings will automatically appear in the Settings page:

PuppetDB settings

URL PEEe Eweesolldc "n - Eme'lees s i
User admin

Password ™

=]

and can be edited using the form defined above:

181

PuppetDB settings

URL
URL to the PuppetDB server. For example: hitps://puppetdb-
infra_clear2pay.com

User admin

Mame of the user used to connect to the PuppetDB server.

Password

Password of the user used to connect to the PuppetDB server.

15.10.15. Extending the security

The security model of Ontrack can be extended to fit for specific needs in extensions.

Adding functions

All authorizations in the code are granted through functions. We distinguish between:

* global functions about Ontrack in general

 project functions linked to a given project
Global roles are then linked to a number of global functions and project functions.

On the other hand, project roles can only be linked to project functions.

@Glubalﬁalel @Prcjectﬁnlel

@ G.foba.f.f—'uncrmnl @ ijechuncrmnI
| |
] |

The association of core functions and core roles is fixed in the Ontrack core, but extensions can:

* define new global and project functions

* assign them to existing roles
A For security reasons, extensions cannot associate existing core functions to roles.

In order to define a global function, just define an interface which extends GlobalFunction:

public interface MyGlobalFunction extends GlobalFunction {}

182

Almost the same thing for a project function:

public interface MyProjectFunction extends ProjectFunction {}

0 No method is to be implemented.

Now, you can link those functions to existing roles by providing a RoleContributor component. In
our example, we want to grant the global function and the project function to the AUTOMATION global
role and the project function to the PROJECT_OWNER project role.

@Component
public MyRoleContributor implements RoleContributor {
@0verride
public Map<String, List<(Class<? extends GlobalFunction>>>
getGlobalFunctionContributionsForGlobalRoles() {
return Collections.singletonMap(
Roles.GLOBAL_AUTOMATION,
Collections.singletonList(
MyGlobalFunction.class
)
)i
}
@0verride
public Map<String, List<(Class<? extends ProjectFunction>>>
getProjectFunctionContributionsForGlobalRoles() {
return Collections.singletonMap(
Roles.GLOBAL_AUTOMATION,
Collections.singletonList(
MyProjectFunction.class
)
)i
}
@0verride
public Map<String, List<(Class<? extends ProjectFunction>>>
getProjectFunctionContributionsForProjectRoles() {
return Collections.singletonMap(
Roles.PROJECT_OWNER,
Collections.singletonList(
MyProjectFunction.class
)
)i

(r) All available roles are listed in the Roles interface.

You can now check for those functions in your code by injecting the SecurityService:

183

private final SecurityService securityService;

if (securityService.isGlobalFunctionGranted(MyGlobalFunction.class)) {

}

if (securityService.isProjectFunctionGranted(project, MyProjectFunction.class)) {

}

or:

private final SecurityService securityService;

securityService.checkGlobalFunction(MyGlobalFunction.class)) {
securityService.checkProjectFunction(project, MyProjectFunction.class))

(r') The project functions can be tested on a Project or any other entity which belongs
- to a project (branches, builds, etc.).
Adding roles

Both global and project roles can be added using the same RoleContributor extension class, by
overriding the following methods:

184

@Component
public MyRoleContributor implements RoleContributor {
@0verride
public List<RoleDefinition> getGlobalRoles() {
return Collections.singletonList(
new RoleDefinition(
"MY_GLOBAL_ROLE",
"My Global Role",
"This is a new global role"

)
}
@lverride
public List<RoleDefinition> getProjectRoles() {
return Collections.singletonList(
new RoleDefinition(
"MY_PROJECT_ROLE",
"My Project Role",
"This is a new project role"

A new role can inherit from a built-in role:

@0verride
public List<RoleDefinition> getProjectRoles() {
return Collections.singletonList(
new RoleDefinition(
"MY_PROJECT_ROLE",
"My Project Role",

o "This is a new project role",
Roles.PROJECT_PARTICIPANT

In the previous example, the MY_PROJECT_ROLE will inherit from all functions of the
built-in PARTICIPANT role.

Same principle applies for global roles.

Those roles becomes eligible for selection when managing accounts and groups.

Note that functions (built-in or contributed) can be associated to those new roles - see Adding
functions. By default, no function is associated to a contributed role.

185

15.10.16. Extending confidential stores

Extensions can define a custom confidential store used to store encryption keys.

Create a component which extends the AbstractConfidentialStore class:

@Component

@ConditionalOnProperty(name = OntrackConfigProperties.KEY_STORE, havingValue =
"custom")

public class CustomConfidentialStore extends AbstractConfidentialStore {

public CustomConfidentialStore() {
LoggerFactory.getlLogger (CustomConfidentialStore.class).info(
"[key-store] Using custom store"
)i
}

@verride

public void store(String key, byte[] payload) throws IOException {
/] ...
// Stores the key

}

@0verride

public byte[] load(String key) throws IOException {
/] ...
// Retrives the key or ...
return null;

}

Note the use of the ConditionalOnProperty, which allows to select this store when the
ontrack.config.key-storeproperty is set to custom.

15.10.17. Free text annotations

Some free text can be entered as description for some elements of the model and can be
automatically extended with hyperlinks.

See [validation-run-status-hyperlink] for this feature in the validation run statuses.
Using extensions, it is possible to extend this hyperlinked to other elements.

For example, let’s imagine that we have a system where all references like [1234] can be replaced to
alink to http://reference/1234 with 1234 as a text.

For this, you have to create a @Component bean which implements the FreeTextAnnotatorContributor
interface.

The getMessageAnnotators returns a list of "MessageAnnotator s used to transform the text into a

186

http://reference/1234

tree of nodes (typically some HTML).

In our example, this can give something like:

@Component
class RefFreeTextAnnotatorContributor : FreeTextAnnotatorContributor {
override fun getMessageAnnotators(entity: ProjectEntity): List<MessageAnnotator> {
val regex = "\\[(d+)\\]".toRegex()
return 1istOf(
RegexMessageAnnotator (
"\\[d+]\\"
) { match ->
val result = regex.matchEntire(match)
result
?.let {
val id = it.groups[1].value.toInt(10)
MessageAnnotation.of("a")
.attr("href", "http://reference/$id")
.text(id.toString())

?7: match

This component returns a single RegexMessageAnnotator (other implementations are of course
possible, but this one is very convenient) which, given a regular expression, uses any match to
transform into something else.

In our example, we extract the ID from the expression and return a link.

15.10.18. Label providers
Labels can be created and associated manually with projects.

Ontrack allows also some automation of this process using the concept of a label provider.

o Labels created and associated to projects by label providers cannot be managed
manually: they cannot be edited, deleted or unselected.
Implementation

A label provider is a Service which extends the LabelProvider class and returns a list of labels for a
project.

For example, we could have a label provider which associates a "quality" label according to the
"health" of the validation stamps in all "main" branches of the project. The label category would be
"quality" and different names could be "high", "medium" and "low".

187

The code would look like:

@Service
class QualitylLabelProvider : LabelProvider {

override val name: String = "Quality"
override val isEnabled: Boolean = true

override fun getlabelsForProject(project: Project): List<LabelForm> {
// Computes quality of the project
val quality: String = ...
// Returns a label
return 1istOf(
LabelForm(
category = "quality",
name = quality,
description = "",
color = ... // Computes color according to quality

Activation

Even if you code such a label provider, nothing will happen until you activate the collection of
labels.

Ontrack disables this collection by default, because there is no default label provider and that
would be a useless job.

To activate the label collection job, just set the ontrack.config.job-label-provider-enabled
configuration property to true.

Additionally, the label collection can be configured by administrators in the Settings:

Enabled o Yes Mo

Check to enable the automated collection of labels for all projects.
This can generate a high level activity in the background.

Interval (minutes) 180

Interval (in minutes) between each label scan.

Job per project Yes © Mo

Check to have one distinct label collection job per project.

* Enabled - Check to enable the automated collection of labels for all projects. This can generate a
high level activity in the background.

188

e Interval - Interval (in minutes) between each label scan.

* Per project - Check to have one distinct label collection job per project.

15.10.19. Extending promotion checks

Promotion checks like "checking if the previous promotion is granted" are built-in in Ontrack but
one can create its own by creating instances of the PromotionRunCheckExtension extension.

For example, to create a check on the name of the promotion level, that it should be uppercase only:

@Component
class UppercasePromotionRunCheckExtension(
extensionFeature: YourExtensionFeature
): AbstractExtension(extensionFeature), PromotionRunCheckExtension {
override fun checkPromotionRunCreation(promotionRun: PromotionRun) {
if (promotionRun.promotionlLevel.name !=
promotionRun.promotionLevel.name.toUpperCase()) {
throw UppercasePromotionRunCheckException(/* ... */)

}

15.10.20. Extending the search

The Search capabilities of Ontrack can be extended through extensions and the core capabilities are
also coded through extensions.

A Search extension is a component which implements the SearchIndexer interface.

In versions 3.40 and before, search extensions were done using SearchProvider

implementations. Search was always done dynamically, without going through an

index, making it particularly slow on big volumes or when scanning external
o systems.

The SearchProvider is now deprecated and will be removed in version 4 of Ontrack,
to be replaced exclusively by ElasticSearch.

Search indexer overview

A SearchIndexer is responsible for two things:

 feeding a search index

 transforming found index entries into displayable search results
The SearchIndexer must be parameterized by a SearchItem class - see

The indexerName is the display name for the indexer, used to log information or to name the
indexation jobs.

189

Indexation jobs can be totally disabled by setting true as the isIndexationDisabled property. They
cannot even be triggered manually - set isIndexationDisabled to true when search indexes are not
applicable. For example, some SearchIndexer instances might be fed by other indexers.

The indexerSchedule is used to set a schedule to the indexation job. It defaults to Schedule.NONE
meaning that the job can be run only manually. Set another schedule for an automated job.

The indexName defines the name of the technical index used by this SearchIndexer - when using
ElasticSearch, it corresponds to the name of ElasticSearch index to use. The index can be configured
by setting the indexMapping property - see Search indexation mapping for more information on this
subject.

o At Ontrack startup time, all indexes are created (in ElasticSearch) and their
mapping updated.

The searchResultType defines the type of result returned by an index search capability. It’s used:

1. to provide a user a way to filter on the types of results

2. a way for the front-end to associate an icon to the type of result

For example:

@Component
class MySearchIndexer: SearchIndexer<MySearchItem> {
override val searchResultType = SearchResultType(
feature = feature.featureDescription,
id = "my-result",
name = "My result",
description = "Use a comma-separated list of tokens"

The feature is the ExtensionFeature associated with this SearchIndexer (see Coding an extension).

The description property is used to describe the type of search token one should use to find this
type of result (when applicable).

Search indexation

The indexAll method is called by the system when indexation job for this indexer is enabled (it is by
default, unless isIndexationDisabled returns true).

It must:

* loop over all items to be indexed for a search (for example: all projects for the project indexer)

» transform all those items into instances of the SearchItem class associaed with this indexer (for
example: keeping only the project ID, its name and description)

+ call the the provided processor function

190

O The indexAll method is called by the system user.

For example:

override fun indexAll(processor: (ProjectSearchItem) -> Unit) {
structureService.projectlList.forEach { project ->
processor (ProjectSearchItem(project))

}

Behind the scene, the indexation job will send the items to index to an index service in batches
(which makes the indexation quite performant).

The batch size is set by default to 1000 but can be:

1. configured using the ontrack.config.search.index.batch property

2. set explicitly using the indexBatch property of the SearchIndexer (this takes precedence)

Search results

When a search is performed, the SearchService will call the toSearchResult method of the
SearchIndexer in order to transform an indexed item into a result which can be displayed to the
user.

(r') See the documentation of the SearchIndexer.toSearchResult and of SearchResult for
- a complete information.

Usually, the indexer will:

* load the actual Ontrack object or extract information from the indexed item (this latter method
is preferred for performance reasons)

* in particular, it’ll check if the target object makes sense: does it still exist? Is it authorized to the
current user?

 setup a SearchResult instance to describe the result

For example, for the build indexer:

191

override fun toSearchResult(id: String, score: Double, source: JsonNode): SearchRe
structureService.findBuildByID(ID.of(id.toInt()))?.run {
SearchResult(
title = entityDisplayName,
description = description ?: "",
uri = uriBuilder.getEntityURI(this),
page = uriBuilder.getEntityPage(this),
accuracy = score,
type = searchResultType

In this example:

findBuildByID checks both the existence of the build and if it is accessible by the current user,
returning null when not available

the title of the result is set of the complete build name (including project and branch name)
* the uri and page can be computed using an injected URIBuilder

 the accuracy is the score returned by ElasticSearch

for the type just use the searchResultType of the indexer

o As of now, the accuracy is used for sorting results, but is not displayed

The toSearchResult runs with the authorizations of the user who is performing the

é search. Results should be filtered accordingly using an injected SecurityService. If
not, either the search will fail because of forbidden accesses or the final access will
be rejected.

Search index items

The SearchItem class used to parameterize the SearchIndexer must return two values:

* id - the unique ID of this item in the index

» fields - a map of values to store together with the index
Most of the times, you can define:

* a primary constructor listing the properties who want to store

* a secondary constructor using the domain model of Ontrack

Example for the Git commit indexer:

192

class GitCommitSearchItem(
val projectld: Int,
val gitType: String,
val gitName: String,
val commit: String,
val commitShort: String,
val commitAuthor: String,
val commitMessage: String
) : SearchItem {

constructor(project: Project, gitConfiguration: GitConfiguration, commit:
GitCommit) : this(
projectId = project.id(),
gitType = gitConfiguration.type,
gitName = gitConfiguration.name,
commit = commit.id,
commitShort = commit.shortlId,
commitAuthor = commit.author.name,
commitMessage = commit.shortMessage

)
override val id: String = "$gitName::$commit"

override val fields: Map<String, Any?> = asMap(
this::projectId,
this::qgitType,
this::gitName,
this::commit,
this::commitAuthor,
this::commitShort,
this::commitMessage

For the fields of the item, try to get only simple types or list of simple types.

The asMap utility method is optional and can be replaced by a direct map construction. However, it
avoids to hard-code the field names and uses the property references instead.

Search indexation mapping

By default, indexes are mapped automatically to the provided fields (like in ElasticSearch) but
explicit mappings can be provided to:

* disable the indexation of some fields (like the projectId in the example above - while this field is
needed for creating a search result, it should not be used for searches)
* set a type, like keyword or text (the search won’t work the same way)

* boosting the search result score on some fields (a match on a key might be better than a match
on a free description text)

193

While the SearchIndexer mechanism has been made independent on ElasticSearch,
the concept of mapping is very close to this application, in particular the mapping
types (see below).

In order to specify a mapping, the indexMapping of the SearchIndexer must return an instance of
SearchIndexMapping.

While it’s possible to build such an instance manually, it’s more convenient to use the provided
DSL. For example, for the Git commit indexer mentioned above:

override val indexMapping: SearchIndexMapping? = indexMappings<GitCommitSearchItem> {
+GitCommitSearchItem::projectId to id { index = false }
+GitCommitSearchItem::gitType to keyword { index = false }
+GitCommitSearchItem::gitName to keyword { index = false }
+GitCommitSearchItem::commit to keyword { scoreBoost = 3.0 }
+GitCommitSearchItem::commitShort to keyword { scoreBoost = 2.0 }
+GitCommitSearchItem::commitAuthor to keyword()
+GitCommitSearchItem::commitMessage to text()

The syntax is:

+<SearchItem: :property>> [to <type>[{ <configuration> }]]*

The type for the property can be set using:

» id for a long
* keyword
* text

* any other type supported by ElasticSearch using "type("typeName")
The configuration is optional but accepts the following properties:

* index: Boolean - unset by default - to specify if this property must be indexed or not

* scoreBoost: Double - multiplicator for the significance of a match on this field (similar to the
boost indicator in ElasticSearch)

A property can be associated with two types, for example when a field can be both considered as a
keyword or as plain text.

+SearchItem: :myProperty to keyword { scoreBoost = 2.0 } to text()

Search indexation jobs

Unless its isIndexationDisabled property returns true, every SearchIndexer is associated with a job

194

which runs the indexation of all items.

By default, those jobs must be launched manually but the indexSchedule can be used to define a run
schedule.

Additionally, there is "All re-indexations" job which launches all re-indexations ; this is useful when
migrating Ontrack to a deployment using ElasticSearch or to reset all indexes.

Search result icon

The searchResultType returned by a SearchIndexer contains a feature description and an ID. Both are
used to identify the path to an icon which is used on client side:

* in the search box dropdown to select and restrict the type of result

¢ in the list of results

The icon (PNG, square, will be rescaled at client side) must be put in the resources at:

static/extension/<feature>/search-icon/<id>.png

where:

e <feature> is the feature ID

* <id>is the search result type id

Search indexing on events

Re-indexation of a complete index is costly. While some indexes don’t have any other choice but to
recompute the index regularly, it’s more efficient to have the following steps:
* re-indexation once (when Ontrack is migrated to ElasticSearch)

» populating the index on events
Example: the project index is updated when a project is created, updated or deleted.

The type of event to listen to depends on the type of indexed item, but most of the cases are covered
by:
* implement EventListener - when you want to listen to events on project entities like projects,
branches, validation runs, etc.

* PropertyType.onPropertyChanged/onPropertyDeleted to react on properties being created, updated
or deleted

 other types of listeners, more specialized, are also available in Ontrack

In all cases, you have to inject the SearchIndexService and call the appropriate methods, typically
createSearchIndex, updateSearchIndex and deleteSearchIndex, to update the index.

195

Don’t try to cover all the cases. For example, if your index is linked to a build

O property, listen only to the property change, and not to the events occurring to the

- build, its branch or its project. It’s better to check in the toSearchResult method if
the indexed object is still available or not.

196

Chapter 16. Operations

16.1. Metrics

Ontrack can export operational & data metrics to different systems:

¢ Prometheus
e InfluxDB

* Elastic
By default, only the Prometheus export is enabled.

The list of available metrics is available at Monitoring.

16.2. Elastic metrics

To enable the export of metrics into Elastic, set the ontrack.extension.elastic.metrics.enabled
configuration property to true.

This will send Ontrack metrics to Elastic in a unique index following ECS conventions.
See [configuration-properties-elastic] for the configuration of this export to Elastic.

When this export of metrics to Elastic is enabled, Ontrack will provide operational metrics about
this export, typically available in Prometheus:

» ontrack_extension_elastic_metrics_queue - current size of the queue

e ontrack _extension_elastic_metrics_buffer - current size of the buffer

16.3. InfluxDB metrics

The InfluxDB extension is shipped by default with Ontrack but is activated only if some properties
are correctly set:

Property Environment variable Default Description
ontrack.influxdb.enabl ONTRACK_INFLUXDB_ENABL false Enables the export of
ed ED

run info to InfluxDB

ontrack.influxdb.uri ONTRACK_INFLUXDB_URI "http://localhost:8086" URI of the InfluxDB
database

Optionally, the following properties can also be set:

197

https://www.elastic.co/guide/en/ecs/current/ecs-field-reference.html

Property Environment variable Default Description

ontrack.influxdb.usern ONTRACK_INFLUXDB_USERN "rgot" User name to connect
ame AME to the InfluxDB

database
ontrack.influxdb.passw ONTRACK_INFLUXDB_PASSW "rgot" Password to connect to
ord ORD the InfluxDB database
ontrack.influxdb.db ONTRACK_INFLUXDB_DB "ontrack" Name of the InfluxDB

database
ontrack.influxdb.creat ONTRACK_INFLUXDB_CREAT true If true, the database is
e E created at startup
ontrack.influxdb.ss1l.h ONTRACK_INFLUXDB_SSL_H true If false, disables host
ost-check 0ST_CHECK

checking for
certificates. This
should not be used for
a production system!

ontrack.inﬂuxdb.log ONTRACK_INFLUXDB_LOG NONE Level Oflog when

communicating with
InfluxDB. Possible
values are: NONE, BASIC,
HEADERS and FULL

When an InfluxDB connector is correctly set, some Ontrack information is automatically sent to
create timed values:

e run info

e validation run data

16.3.1. InfluxDB management

In case the connection to InfluxDB drops, Ontrack will re-attempt to reconnect after 15 minutes by
default.

The retry period can be configured using the ontrack.influxdb.validity
configuration property. For example, to set to one hour:

ontrack.influxdb.validity = 1h

You can force Ontrack to reconnect using several ways:

* through the POST /manage/influxdb management end point if you have access to it (depending on
your installation)

* through the POST /extension/influxdb HTTP end point if you’re an administrator

 through the UI under the _InfluxDB status" user menu:

198

homea

InfluxDB status

URL: http://localhost:8086
Database: ontrack

v UP

16.4. Logging

Ontrack is using Spring Boot default logging settings.

16.4.1. Enabling JSON logging
To enable JSON logging, just add the logging-json profile to Ontrack.
For example:

» spring.profiles.active=prod,logging-json when using system properties
* or SPRING.PROFILES.ACTIVE=prod,logging-json when using environment variables

* PROFILE=prod,logging-json when using the Docker image

199

Chapter 17. Appendixes

17.1. Configuration properties

Ontrack uses the Spring Boot mechanism for its configuration. See the documentation on how to set
those properties in your Ontrack installation.

All Spring Boot properties are available for configuration.

Additionally, Ontrack defines the following ones.

The names of the configuration properties are given for a .properties file format

Q

but you can configure them in YAML of course. They can also be provided as

- system properties or environment variables. See the Spring Boot documentation
for more details.

A
Q

17.1.1. Notifications configuration

General configuration for the notifications.

Name

ontrack.config.ext
ension.notificatio
ns.enabled

ontrack.config.ext
ension.notificatio
ns.in-
memory.enabled

ontrack.config.ext
ension.notificatio
ns.mail.from

ontrack.config.ext
ension.notificatio
ns.processing.queu
e.concurrency

ontrack.config.ext
ension.notificatio
ns.processing.queu
e.async

200

Environment

ONTRACK_CONFIG_EXT
ENSION_NOTIFICATIO
NS_ENABLED

ONTRACK_CONFIG_EXT
ENSION_NOTIFICATIO
NS_INMEMORY_ENABLE
D

ONTRACK_CONFIG_EXT
ENSION_NOTIFICATIO
NS_MAIL_FROM

ONTRACK_CONFIG_EXT
ENSION_NOTIFICATIO
NS_PROCESSING_QUEU
E_CONCURRENCY

ONTRACK_CONFIG_EXT
ENSION_NOTIFICATIO
NS_PROCESSING_QUEU
E_ASYNC

Description

Are the
notifications
enabled?

Is the in-memory
notification
channel enabled?
Used for testing
only.

From address for
the email
notifications

Maximum parallel
processing of
queues

Is asynchronous
processing of
notifications
enabled?

When applicable, the default value is mentioned.

Default value

false

false

no-reply@localhost

true

This sample file is meant as a guide only. Do not copy/paste the entire content into
your application; rather pick only the properties that you need.

Notes

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#howto-properties-and-configuration

Name Environment Description Default value

ontrack.config.ext ONTRACK_CONFIG_EXT Are internal false
ension.notificatio ENSION_NOTIFICATIO
ns.webhook.interna NS_WEBHOOK_INTERNA
1.enabled L_ENABLED enabled?

webhooks

17.1.2. WorkflowConfigurationProperties

Name Environment Description Default value

ontrack.config.ext ONTRACK_CONFIG_EXT Time to wait for PT1S

ension.workflows.p ENSION_WORKFLOWS_P the completion of

arent-waiting- ARENTWAITINGINTERV

interval AL the parents of a
nodein a
workflow

17.1.3. General configuration

General configuration of Ontrack.

Name Environment Description Default value
ontrack.config.app ONTRACK_CONFIG_APP Disabling the true
lication-log- LICATIONLOGENABLED

collection of log
entries in the
application

enabled

ontrack.config.app ONTRACK_CONFIG_APP Maximum number 10
lication-log-info- LICATIONLOGINFOMAX
max

of errors to

display as
notifications in the
GUI
ontrack.config.app ONTRACK_CONFIG_APP Maximum number 7

lication-log- LICATIONLOGRETENTI

f days to keep th
retention-days ONDAYS ol days to keep the

log entries
ontrack.config.app ONTRACK_CONFIG_APP Directory which work/files

ljcation—working— LICATIONWORKINGDIR . 1tains all the

dir))
working files of
Ontrack. It is
usually set by the

installation.

Notes

Notes

Notes

201

Name

ontrack.config.bui
1d-filter-count-
max

ontrack.config.con
figuration-test

ontrack.config.doc
uments.engine

ontrack.config.fil
e-key-
store.directory
ontrack.config.job

-label-provider
-enabled

ontrack.config.job
s.orchestration

ontrack.config.job
s.paused-at-
startup

ontrack.config.job
s.pool-size

202

Environment

ONTRACK_CONFIG_BUI
LDFILTERCOUNTMAX

ONTRACK_CONFIG_CON
FIGURATIONTEST

ONTRACK_CONFIG_DOC
UMENTS_ENGINE

ONTRACK_CONFIG_FIL
EKEYSTORE_DIRECTOR
Y

ONTRACK_CONFIG_JOB
LABELPROVIDERENABL
ED

ONTRACK_CONFIG_JOB
S_ORCHESTRATION

ONTRACK_CONFIG_JOB
S_PAUSEDATSTARTUP

ONTRACK_CONFIG_JOB
S_POOLSIZE

Default value
200

Description

Maximum
number of builds
which can be
returned by a
build filter. Any
number above is
truncated down to
this value

Testing the true

configurations of
external
configurations.
Used only for
internal testing, to
disable the checks
when creating
external
configurations.

engine field jdbe

directory field

Activation of the false

provided labels
collection job

Interval (in 2
minutes) between
each refresh of the
job list

Set to true tonot false

start any job at
application
startup. The
administrator can
restore the
scheduling jobs
manually

Number of 10
threads to use to

run the

background jobs

Notes

Name Environment

ontrack.config.job ONTRACK_CONFIG_J]OB
s.scattering S_SCATTERING

ontrack.config.job ONTRACK_CONFIG_J]OB
s.scattering-ratio S_SCATTERINGRATIO

ontrack.config.job ONTRACK_CONFIG_J]OB
s.timeout S_TIMEOUT

Description Default value Notes

Enabling the true
scattering of jobs.
When several jobs
have the same
schedule, this can
create a peak of
activity,
potentially
harmful for the
performances of
the application.
Enabling
scattering allows
jobs to be
scheduled with an
additional delay,
computed as a
fraction of the
period.

Scattering ratio. 1.0
Maximum fraction
of the period to
take into account
for the scattering.
For example,
setting 0.5 would
not add a period
greater than half
the period of the
job. Setting O
would actually
disable the
scattering
altogether.

Global timeout ~ PT4H
for all jobs. Any

job running longer
than this time will

be forcibly

stopped

(expressed by

default in hours)

203

Name

ontrack.config.job ONTRACK_CONFIG_J]OB

s.timeout-
controller-
interval

ontrack.config.key ONTRACK_CONFIG_KEY

-store

ontrack.config.sea ONTRACK_CONFIG_SEA

rch.index.batch

ontrack.config.sea ONTRACK_CONFIG_SEA

rch.index.ignore-
existing

204

Environment

S_TIMEOUTCONTROLLE
RINTERVAL

STORE

RCH_INDEX_BATCH

RCH_INDEX_IGNOREEX
ISTING

Default value
PT15M

Description

Amount of time to
wait between two
controls of the job
timeouts
(expressed by
default in
minutes)

Key store typeto file
use to store

encryption keys

When performing 1000

full indexation,
the indexation is
performed by
batch. The
parameter below
allows to set the
size of this batch
processing. Note:
this is a default
batch size. Custom
indexers can
override it.

Option to ignore false

errors when
creating indexes.
For test only,
allowing for
concurrent testing.

Notes

Name Environment

ontrack.config.sea ONTRACK_CONFIG_SEA
rch.index.immediat RCH_INDEX IMMEDIAT
e E

ontrack.config.sea ONTRACK_CONFIG_SEA
rch.index.logging RCH_INDEX_LOGGING

ontrack.config.sea ONTRACK_CONFIG_SEA
rch.index.tracing RCH_INDEX_TRACING

Description Default value Notes

By default, false
indexation is
ElasticSearch is
done after some
time after the
index has been
requested. The
flag below forces
the index to be
refreshed
immediately. This
SHOULD NOT be
used in production
but is very useful
when testing
Ontrack search
capabilities

When performing false
full indexation,
the indexation is
performed by
batch. The
parameter below
allows to generate
additional logging
when indexing
actions are
actually taken.

When performing false
full indexation,
the indexation is
performed by
batch. The
parameter below
allows to generate
additional deep
level logging for
all actions on Git
issues. Note: if set
to true this
generates a lot of
information at
DEBUG level.

205

Name

ontrack.config.sec
urity.tokens.cache
.enabled

ontrack.config.sec
urity.tokens.cache
.max-count

ontrack.config.sec
urity.tokens.cache
.validity

ontrack.config.sec
urity.tokens.passw
ord

ontrack.config.sec
urity.tokens.trans
ient-validity

ontrack.config.sec
urity.tokens.valid
ity
ontrack.config.tem
plating.errors

ontrack.config.tem
plating.html-
tags.<0>

ontrack.config.ui.
enabled

ontrack.config.ui.
uri

ontrack.config.url

Environment

ONTRACK_CONFIG_SEC
URITY_TOKENS_CACHE
_ENABLED

ONTRACK_CONFIG_SEC
URITY_TOKENS_CACHE
_MAXCOUNT

ONTRACK_CONFIG_SEC
URITY_TOKENS_CACHE
_VALIDITY

ONTRACK_CONFIG_SEC
URITY_TOKENS_PASSW
ORD

ONTRACK_CONFIG_SEC
URITY_TOKENS_TRANS
IENTVALIDITY

ONTRACK_CONFIG_SEC
URITY_TOKENS_VALID
ITY

ONTRACK_CONFIG_TEM
PLATING_ERRORS

ONTRACK_CONFIG_TEM
PLATING_HTMLTAGS <
0>

ONTRACK_CONFIG_UI_
ENABLED

ONTRACK_CONFIG_UI_
URI

ONTRACK_CONFIG_URL

17.1.4. GitHub configuration

Configuration of the GitHub extension

Name

ontrack.extension.
github.metrics.ena
bled

Environment

ONTRACK_EXTENSION_
GITHUB_METRICS_ENA
BLED

Description

enabled field

maxCount field

validity field

password field

transientValidity
field

validity field

errors field

HTML tags to
accept on top of
the default ones

enabled field
uri field

Root URL for this
Ontrack
installation, used
for notifications

Description

Set to false to

disable the export
of the GitHub API

rate limit

17.1.5. GitHub Ingestion configuration

Configuration of the ingestion of GitHub workflows

206

Default value Notes

true Deprecated: Will
be removed in V5

1000 Deprecated: Will
be removed in V5

PT720H Deprecated: Will
be removed in V5

true

PT30M

PTOS

IGNORE

Empty list

false

http://localhost:3
000/ui

http://localhost:8
080

Default value Notes

true

http://localhost:3000/ui
http://localhost:3000/ui
http://localhost:8080
http://localhost:8080

Name

ontrack.extension.
github.ingestion.h
ook.signature.disa
bled

ontrack.extension.
github.ingestion.p
rocessing.async

ontrack.extension.
github.ingestion.p
rocessing.reposito
ries.<*>

ontrack.extension.
github.ingestion.p
rocessing.reposito
ries.<*>.owner

ontrack.extension.
github.ingestion.p
rocessing.reposito
ries.<*>.repositor

y
ontrack.extension.
github.ingestion.p
rocessing.scale

Environment

ONTRACK_EXTENSION_
GITHUB_INGESTION_H
O0K_SIGNATURE_DISA
BLED

ONTRACK_EXTENSION_
GITHUB_INGESTION_P
ROCESSING_ASYNC

ONTRACK_EXTENSION_
GITHUB_INGESTION_P
ROCESSING_REPOSITO
RIES_<*>_OWNER

ONTRACK_EXTENSION_
GITHUB_INGESTION_P
ROCESSING_REPOSITO
RIES_<*>_REPOSITOR
Y

ONTRACK_EXTENSION_
GITHUB_INGESTION_P
ROCESSING_SCALE

17.1.6. Jenkins configuration

Description Default value

Set to true to false

disable the
signature checks
(OK for testing,
NOT for
production)

By default, true, true
using a RabbitMQ
engine. Set to false

to use a direct
processing
(synchronous)

List of specific
bindings. Each
entry is indexed
by the name of the
configuration (just
a key).

Empty

Regex for the
repository owner,
null for match all

Regex for the
repository name,
null for match all

Extending the 1
number of default
queues to spread
the load

Configuration of the connection to Jenkins

Name

Environment

Description Default value

ontrack.jenkins.ti ONTRACK_JENKINS_TI Defgult timeoutto 39

meout

MEOUT

connect to Jenkins,
in seconds

17.1.7. Auto-versioning configuration

Configuration of the auto-versioning

Notes

Notes

207

Name Environment Description Default value Notes

ontrack.extension. ONTRACK_EXTENSION_ By default, true
auto- AUTO_VERSIONING_QU (1 rack uses
versioning.queue.a EUE_ASYNC .

sync RabbitMQ queue

to manage the
auto versioning
processes.
Disabling this
mechanism is not
recommended and
is used only for
internal testing.

ontrack.extension. ONTRACK_EXTENSION_ Cancelling the true

auto- AUTO_VERSIONING_QuU .

— - revious orders
versioning.queue.c EUE_CANCELLING ? viod
ancelling or the same

source and same

target if a new

order comes in
ontrack.extension. ONTRACK_EXTENSION_ Ljst of projects Empty list
auto- AUTO_VERSIONING_QU

versioning.queue.p EUE_PROJECTS_<0>
rojects.<0>

which must have
dedicated queues

ontrack.extension. ONTRACK_EXTENSION_ Default number of 1

autoj _ AUTO_VERSIONING_QU RabbitMQ queues
versioning.queue.s EUE_SCALE {0 use

cale

17.1.8. Terraform Cloud configuration

Configuration of the TFC hooks.

Name Environment Description Default value Notes
ontrack.extension. ONTRACK_EXTENSION_ Set to true to false
tfc.hook.signature TFC_HOOK_SIGNATURE jicobie the
.disabled _DISABLED .1
signature checks
(OK for testing,
NOT for
production)

17.1.9. Time since event metrics configuration

Configuration of the export of the metrics of the "Time since events" (TSE).

208

Name

ontrack.extension.
delivery-
metrics.tse.enable
d

ontrack.extension.
delivery-

Environment

ONTRACK_EXTENSION_
DELIVERY_METRICS_T
SE_ENABLED

ONTRACK_EXTENSION_
DELIVERY_METRICS_T

metrics.tse.interv SE_INTERVAL

al

17.1.10. Git configuration

Configuration of the connections to Git.

Name

ontrack.config.ext
ension.git.indexat
ion.cleanup.cron

ontrack.config.ext
ension.git.indexat
ion.cleanup.enable
d

ontrack.config.ext
ension.git.indexat
ion.timeout

ontrack.config.ext
ension.git.pull-
requests.cache.dur
ation

ontrack.config.ext
ension.git.pull-
requests.cache.ena
bled

ontrack.config.ext
ension.git.pull-
requests.cleanup.d
eleting

Environment

ONTRACK_CONFIG_EXT
ENSION_GIT_INDEXAT
ION_CLEANUP_CRON

ONTRACK_CONFIG_EXT
ENSION_GIT_INDEXAT
ION_CLEANUP_ENABLE
D

ONTRACK_CONFIG_EXT
ENSION_GIT_INDEXAT
ION_TIMEOUT

ONTRACK_CONFIG_EXT
ENSION_GIT_PULLREQ
UESTS_CACHE _DURATI
ON

ONTRACK_CONFIG_EXT
ENSION_GIT_PULLREQ
UESTS_CACHE _ENABLE
D

ONTRACK_CONFIG_EXT
ENSION_GIT_PULLREQ
UESTS_CLEANUP_DELE
TING

Description Default value

Is the "time since true
event" metric
enabled?

Interval between PT30M

two scans for
"time since events"
(expressed by
default in
minutes)

Description Default value

Cron for the job
(empty to let it run
manually)

Cleanup of Git true
indexations

working

directories

Timeout for the PT30M

Git indexations
(expressed by
default in
minutes)

Caching duration PT6H
for pull requests.

Time before a new
connection is
needed to get
information about

the PR from the

SCM.

Is the cache for true
pull requests
enabled?

Days before /
deleting a PR

branch after it’s
been closed or
merged

Notes

Notes

209

Name

ontrack.config.ext
ension.git.pull-
requests.cleanup.d
isabling

ontrack.config.ext
ension.git.pull-
requests.cleanup.e
nabled

ontrack.config.ext
ension.git.pull-
requests.enabled

ontrack.config.ext
ension.git.pull-
requests.timeout

ontrack.config.ext
ension.git.remote.
interval

ontrack.config.ext
ension.git.remote.
max-no-remote

210

Environment

ONTRACK_CONFIG_EXT
ENSION_GIT_PULLREQ
UESTS_CLEANUP_DISA
BLING

ONTRACK_CONFIG_EXT
ENSION_GIT_PULLREQ
UESTS_CLEANUP_ENAB
LED

ONTRACK_CONFIG_EXT
ENSION_GIT_PULLREQ
UESTS_ENABLED

ONTRACK_CONFIG_EXT
ENSION_GIT_PULLREQ
UESTS_TIMEOUT

ONTRACK_CONFIG_EXT
ENSION_GIT_REMOTE_
INTERVAL

ONTRACK_CONFIG_EXT
ENSION_GIT_REMOTE_
MAXNOREMOTE

Description Default value
Days before 1
disabling a PR

branch after it’s
been closed or
merged

Auto cleanup of true

pull requests

Is the support for true

pull requests
enabled?

Timeout before PT5S

giving up on PR
check

Interval between PT30S

retries (by default
in seconds and set
to 30 seconds by
default).

Number of times 3
we accept a "no
remote" exception

is thrown before
deactivating the
project in Ontrack.

If < 0, we always
retry and never
disable the
project.

Notes

Deprecated: Will
be removed in V5.
Support for pull
requests will be
transformed in V5.

Deprecated: Will
be removed in V5.
Support for pull
requests will be
transformed in V5.

Deprecated: Will
be removed in V5.
No fetch nor clone
of Git repository
will be done by
Ontrack any
longer.

Deprecated: Will
be removed in V5.
No fetch nor clone
of Git repository
will be done by
Ontrack any
longer.

Name Environment Description Default value
ontrack.config.ext ONTRACK_CONFIG_EXT Timeout (by PT10M
ension.git.remote. ENSION_GIT_REMOTE_ default in

operation-timeout OPERATIONTIMEOUT i
minutes) for a

given remote
operation to

complete (like
fetch & clone)

Set to 10 minutes
by default.
ontrack.config.ext ONTRACK_CONFIG_EXT Timeout (by PTIM

ension.git.remote. ENSION_GIT_REMOTE_

fault i
timeout TIMEOUT default in seconds)

for a given remote
operation to start
(like fetch &
clone). Leave 0 to
use the default
system value. Set
to 60 seconds by
default. This
timeout is used for
the connection
part, not the total
duration of the
operation.

17.1.11. Git Search configuration

Configuration of the search for Git objects.

Name Environment Description Default value

ontrack.config.sea ONTRACK_CONFIG_SEA nterval between PT1H
rch.git.commits.sc RCH_GIT_COMMITS_SC

two indexations,
hedule HEDULE

in minutes.

ontrack.config.sea ONTRACK_CONFIG_SEA Enabling auto true
rch.git.commits.sc RCH_GIT_COMMITS_SC

et
heduled HEDULED naexation

17.1.12. Queues configuration

General configuration for the RabbitMQ queues.

Notes

Deprecated: Will
be removed in V5.
No fetch nor clone
of Git repository
will be done by
Ontrack any
longer.

Deprecated: Will
be removed in V5.
No fetch nor clone
of Git repository
will be done by
Ontrack any
longer.

Notes

211

Name Environment Description Default value

ontrack.extension. ONTRACK_EXTENSION_ Emits a warning if true

queue.general.warn QUEUE_GENERAL_WARN the queues are not

-if-async IFASYNC
asynchronous
(careful: the
property name is a
misnomer and will
be renamed at one
point into
warnlIfSync
ontrack.extension. ONTRACK_EXTENSION_ async field true
queue.general.asyn QUEUE_GENERAL_ASYN
c C
ontrack.extension. - specific field Empty
queue.specific.<*>
ontrack.extension. ONTRACK_EXTENSION_ Number of queues 1
queue..specific.<* QUEUE__SPECIFIC_<*
>.scale > SCALE
ontrack.extension. ONTRACK_EXTENSION_ async field true
queue..specific.<* QUEUE__SPECIFIC_<*
>.async >_ASYNC
17.1.13. Recordings configuration
Name Environment Description Default value
ontrack.extension. - cleanup field Empty
recordings.cleanup
<>

ontrack.extension. ONTRACK_EXTENSION_ How much more PT240H
recordings..cleanu RECORDINGS__CLEANU

time after the
p.<*>.cleanup P_<*> CLEANUP .

retention must all

the records be

kept

ontrack.extension. ONTRACK_EXTENSION_ How much time PT240H

recordings..cleanu RECORDINGS__CLEANU

X must the closed
p.<*>.retention P _<*> RETENTION

records be kept

17.1.14. CasC configuration

Configuration of the "Configuration as Code".

Name Environment Description Default value
ontrack.config.cas ONTRACK_CONFIG_CAS Isthe true
c.enabled C_ENABLED

configuration as
code enabled?

212

Notes

Notes

Notes

Name

ontrack.config.cas
c.locations.<@>

ontrack.config.cas
c.reloading.cron

ontrack.config.cas
c.reloading.enable
d

ontrack.config.cas
c.secrets.director

y
ontrack.config.cas

c.secrets.type

ontrack.config.cas
c.upload.enabled

Environment

ONTRACK_CONFIG_CAS
C_LOCATIONS_<@>

ONTRACK_CONFIG_CAS
C_RELOADING_CRON

ONTRACK_CONFIG_CAS
C_RELOADING_ENABLE
D

ONTRACK_CONFIG_CAS
C_SECRETS_DIRECTOR
Y

ONTRACK_CONFIG_CAS
C_SECRETS_TYPE

ONTRACK_CONFIG_CAS
C_UPLOAD_ENABLED

Description Default value

List of resources to Empty list
load and to

monitor for

changes

Cron schedule for
the reloading.
Leave blank or
empty to disable
the automated
reloading.

Enables the false

creation of a job to
reload the CasC.

Directory used to
store the secret
files (used only
when type == "file"

Source for the env
secrets.

Either "env"
(default) or "file"

Is the upload of ~ false

Casc YAML file
enabeld?

17.1.15. Indicators configuration

Configuration of the indicators

Name

ontrack.extension.
indicators.importi
ng.deleting

ontrack.extension.
indicators.metrics
.cron

Environment

ONTRACK_EXTENSION_
INDICATORS_IMPORTI
NG_DELETING

ONTRACK_EXTENSION_
INDICATORS_METRICS
_CRON

Description Default value

When a false

category/type does
not exist any
longer for a given
import ID, must it
be deleted?

Cron for the @daily
scheduled export

of metrics

Notes

Notes

213

Name Environment Description Default value

ontrack.extension. ONTRACK_EXTENSION_ Enabling the true
indicators.metrics INDICATORS_METRICS

scheduled export
.enabled _ENABLED

of metrics (a
manual job is
always available)

17.1.16. License configuration

Name Environment Description Default value

ontrack.config.lic ONTRACK_CONFIG_LIC 1jcense provider none
ense.provider ENSE_PROVIDER

ontrack.config.lic ONTRACK_CONFIG_LIC pyration before PT336H

ense.warning ENSE_WARNING the expiry date,

when to emit a
warning
(expressed by
defaults in days)

17.1.17. Embedded license configuration

Name Environment Description Default value

ontrack.config.lic ONTRACK_CONFIG_LIC [jcense key
ense.embedded.key ENSE_EMBEDDED_KEY

17.1.18. Fixed license configuration

Name Environment Description Default value

ontrack.config.lic ONTRACK_CONFIG_LIC s the license true
ense.fixed.active ENSE FIXED ACTIVE active?
ontrack.config.lic ONTRACK_CONFIG_LIC Assignee of the n/a
ense.fixed.assigne ENSE_FIXED_ASSIGNE

license
e E

ontrack.conﬁg.lic ONTRACK_CONFIG_LIC Maximum number 0
ense.fixed.max- ENSE_FIXED_MAXPROJ]

of projects
projects ECTS pre
ontrack.config.lic ONTRACK_CONFIG_LIC Name of the n/a
ense.fixed.name ENSE_FIXED_NAME license

ontrack.config.lic ONTRACK_CONFIG_LIC Validity of the
ensg.ﬁxed.vahd— ENSE_FIXED_VALIDUN license
until TIL

17.1.19. StripeLicenseConfigurationProperties

214

Notes

Notes

Notes

Notes

Name Environment Description Default value Notes

ontrack.config.lic ONTRACK_CONFIG_LIC subscription field
ense.stripe.subscr ENSE_STRIPE_SUBSCR
iption IPTION

ontrack.config.lic ONTRACK_CONFIG_LIC token field
ense.stripe.token ENSE_STRIPE_TOKEN

17.1.20. Artifactory configuration

Configuration of the Artifactory extension

Name Environment Description Default value Notes

ontrack.extension. ONTRACK_EXTENSION_ Disabling the build false
artifactory.build- ARTIFACTORY_BUILDS

jobs?
sync-disabled YNCDISABLED sync jobs

17.1.21. Vault configuration

Ontrack can be configured to use Vault to store the encryption keys.

Name Environment Description Default value Notes
ontrack.config.vau ONTRACK_CONFIG_VAU prefix to be used ontrack/keys

lt.prefix LT_PREFIX to store the keys
ontrack.config.vau ONTRACK_CONFIG_VAU Token for the test
1t.token LT_TOKEN authentication
ontrack.config.vau ONTRACK_CONFIG_VAU URI to the Vault http://localhost:8

1t.uri LT_URI end point 200

17.1.22. InfluxDB configuration
Configuration of the connection to InfluxDB for the export of metrics.

Name Environment Description Default value Notes

ontrack.influxdb.c ONTRACK_INFLUXDB_C If the database true

reate REATE must be created
automatically
ontrack.influxdb.d ONTRACK_INFLUXDB_D Name of the ontrack
b B InfluxDB database
where to send the
metrics
ontrack.influxdb.e ONTRACK_INFLUXDB_E Enabling the false
nabled NABLED

export of metrics
to InfluxDB

215

http://localhost:8200
http://localhost:8200

Name

ontrack.influxdb.1 ONTRACK INFLUXDB_ L

09

ontrack.influxdb.p ONTRACK_INFLUXDB_P

assword

ontrack.influxdb.p ONTRACK_INFLUXDB_P

refix

216

Environment

0G

ASSWORD

REFIX

Description Default value

Log level of the NONE
InfluxDB
commands

Password used to root
connect to
InfluxDB

Prefix to add ontrack
before the metric
name.

For example, if
prefix = ontrack

*validation_data

becomes
ontrack _validation

_data *
ontrack_metric
becomes

ontrack metric (no
change)

For example, if
prefix =
ontrack_acceptance

*validation_data

becomes
ontrack_acceptance

_validation_data *
ontrack _metric

becomes
ontrack_acceptance

_metric

For example, if
prefix = instance

*validation_data

becomes
instance_validatio

n_data *
ontrack metric

becomes
instance_metric

Notes

Name

ontrack.influxdb.s
sl.host-check

ontrack.influxdb.u
ri

ontrack.influxdb.u
sername

ontrack.influxdb.v
alidity

Environment

ONTRACK_INFLUXDB_S
SL_HOSTCHECK

ONTRACK_INFLUXDB_U
RI

ONTRACK_INFLUXDB_U
SERNAME

ONTRACK_INFLUXDB_V
ALIDITY

Description

If the SSL
connection must
be valid

URL of the
InfluxDB instance

Username used to
connect to
InfluxDB

Duration after
which the
connection to
InfluxDB is
checked for
validity and
renewed if
necessary.

17.1.23. ElasticSearch metrics configuration

Configuration of the export of metrics into ElasticSearch

Name

ontrack.extension.
elastic.metrics.al
low-drop

ontrack.extension.
elastic.metrics.ap
i-compatibility-
mode

Environment

ONTRACK_EXTENSION_
ELASTIC_METRICS_AL
LOWDROP

ONTRACK_EXTENSION_
ELASTIC_METRICS_AP
ICOMPATIBILITYMODE

Description

Set to false to
disable the
deletion of the
index when
performing a re-
indexation

Set to true to
enable the API
Compatibility
mode when
accessing a 8.x ES
server.

See
https://www.elasti
c.co/guide/en/
elasticsearch/
client/java-rest/
7.17/java-rest-
high-

compatibility.html

Default value

true

http://localhost:8
086

root

PT15M

Default value

true

false

Notes

Notes

217

http://localhost:8086
http://localhost:8086
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.17/java-rest-high-compatibility.html
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.17/java-rest-high-compatibility.html
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.17/java-rest-high-compatibility.html
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.17/java-rest-high-compatibility.html
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.17/java-rest-high-compatibility.html
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.17/java-rest-high-compatibility.html
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.17/java-rest-high-compatibility.html

Name

ontrack.extension.
elastic.metrics.de
bug

ontrack.extension.
elastic.metrics.en
abled

ontrack.extension.
elastic.metrics.in
dex.immediate

ontrack.extension.
elastic.metrics.in
dex.name

ontrack.extension.
elastic.metrics.qu
eue.flushing

218

Environment

ONTRACK_EXTENSION_
ELASTIC_METRICS_DE
BUG

ONTRACK_EXTENSION_
ELASTIC_METRICS_EN
ABLED

ONTRACK_EXTENSION_
ELASTIC_METRICS_IN
DEX_IMMEDIATE

ONTRACK_EXTENSION_
ELASTIC_METRICS_IN
DEX_NAME

ONTRACK_EXTENSION_
ELASTIC_METRICS_QU
EUE_FLUSHING

Description Default value

Must we trace the false
behaviour of the

export of the

metrics in the

logs?

Is the export of ~ false
metrics to Elastic
enabled?

Flag to enable false
immediate re-
indexation after
items are added
into the index
(used mostly for
testing. It should
not be used in
production. If set
to true, this
overrides the
asynchronous
processing of the
metrics

Name of the index ontrack_metrics

to contains all
Ontrack metrics

Every such PTTM
interval, the

current buffer of
metrics is flushed

to Elastic

(expressed by

default in

minutes)

Notes

Name Environment Description Default value Notes

ontrack.extension. ONTRACK_EXTENSION_ Defines where the MAIN
elastic.metrics.ta ELASTIC METRICS_TA

Elastic metrics
rget RGET

should be sent.

Possible values
are: * MAIN -
When this option
is selected, the ES
instance used by
Ontrack for the
regular search will
be used. *
CUSTOM -When
this option is
selected, the ES
instance defined
by the metrics
properties will be
used.

17.1.24. RabbitMQ configuration

Configuration of the client from Ontrack to Rabbit MQ. Note that basic connection parameters are
handled using Spring Boot configuration.

Name Environment Description Default value Notes

ontrack.config.rab ONTRACK_CONFIG_RAB True (default) to true
bitmg.transactiona BITMQ_TRANSACTIONA

1 \ make the sending

of messages part
of the current
transaction.

17.2. Templating engine
The templating engine is used to render some text (plain or in some markup language).

Each template is available to refer to a context, typically linked to an event. These context items can
be rendered directly, enriched through source fields, optional configured, and finally filtered for
additional formatting.

The general format of a template is a string which contains expressions like:
${expression}

Each expression is either a function call or a context reference.

219

For a function call, the general syntax is:

#.function?namel=valuel&name2=value2|filter

A function can have any number of named configuration parameters or none at all
like below:

#.function

For a context reference, the general syntax is similar:

ref(.source)?namel=valuel&name2=value2|filter

The .source is optional and allows to refine the context reference.
Examples of valid context references:
project

branch.scmBranch|urlencode
promotionRun.changelog?acrossBranches=false

The list of context elements (project, branch, ...) depends on the execution context for the template.
For example, when using notifications, it all depends on the event being subscribed to.

To see the list of possible events and their contexts, see Event types.

The next sections list the available sources, functions, contexts and filters.

There are also special objects, known as templating renderable, which are specific to some contexts,
like Auto versioning on promotion or Workflows.

17.2.1. Execution contexts

Different root contexts are available for the template expressions, depending on the context in
which the template is executed.

For a notification, the template is always executed in regard to an event. Each event provides its
own list of root contexts. See the list of events.

There are several specific contexts:

Auto-versioning context

For the templates used during an auto-versioning process (post-processing parameters, pull request
templates, etc.), the following root contexts are available:

220

Context Type Description

sourceProject Project Reference to the project where
the promotion was done

targetBranch Branch Branch being updated

sourceBuild Build Build which has been promoted

sourcePromotionRun Promotion run Promotion object

PROMOTION String Name of the promotion

PATH String First path being updated

PATHS String Comma-separated list of all
paths being updated

PROPERTY String Target property being updated

VERSION String Version being set

av See Auto-versioning context Specific object for the auto-

(av) versioning

17.2.2. List of templating sources

* Build.changelog

* description

¢ linked

* meta

* PromotionRun.changelog
* qualifiedLongName

* release

* scmBranch

e version

Build.changelog

Renders a change log for this build.
The "to build" is the one being referred to.
The "from build" is the build whose ID is set by the "from" parameter.

If project is set to a comma-separated list of strings, the change log will be rendered for the
recursive links, in the order to the projects being set (going deeper and deeper in the links).

Applicable for:

* build

221

Configuration:

allQualifiers - Boolean - required - Loop over all qualifiers for the last level of dependencies,
including the default one. Qualifiers at dependencies take precedence.

commitsOption - NONE, OPTIONAL, ALWAYS - required - Defines how to render commits for a
change log

defaultQualifierFallback - Boolean - required - If a qualifier has no previous link, uses the
default qualifier (empty) qualifier.

dependencies - List - required - Comma-separated list of project links to follow one by one for a
get deep change log. Each item in the list is either a project name, or a project name and
qualifier separated by a colon (:).

empty - String - required - String to use to render an empty or non existent change log
from - Int - required - ID to the build to get the change log from

title - Boolean - required - Include a title for the change log

Example:

${build.changelog?from=1}

description

Getting the description for an entity.

Applicable for:

project

branch
promotion level
validation stamp
build

promotion run

validation run

Configuration:

default - String - optional - default field

Example:

${branch.description}

222

linked

Getting a linked build and displaying its name or release name.
Applicable for:

* build
Configuration:

* mode - NAME, RELEASE, AUTO - required - How to the linked build must be rendered.
o name: build name only
o release: build release/version/label (required in this case)
o auto: build release/version/label if available, build name otherwise

* project - String - required - Name of the project to get a link to.

* qualifier - String - optional - Qualifier of the link (optional).

Example:

${build.1linked?project=dependency&mode=auto}

meta

Gets some meta information from a project entity.
Applicable for:

* project

* branch

* promotion level
« validation stamp
* build

* promotion run

« validation run
Configuration:

* category - String - optional - Category of the key of the meta information to get

* error - Boolean - required - If true, an error is raised when meta information is not found

link - Boolean - required - If true, the link of the meta information is rendered instead of the
value

* name - String - required - Name of the key of the meta information to get

Example:

223

${build.release}

PromotionRun.changelog

Renders a change log for this promotion run.
The "to build" is the one being promoted.

The "from build" is the last build (before this one) having been promoted to the associated
promotion level.

If no such previous build is found on the associated branch, the search will be done across the
whole project, unless the acrossBranches configuration parameter is set to false.

If project is set to a comma-separated list of strings, the change log will be rendered for the
recursive links, in the order to the projects being set (going deeper and deeper in the links).

Applicable for:
* promotion run
Configuration:

» acrossBranches - Boolean - required - By default, if a previous promotion is not found on the
current branch, it’ll be looked for in all branches of the projects. Set this parameter to false to
disable this behaviour.

« allQualifiers - Boolean - required - Loop over all qualifiers for the last level of dependencies,
including the default one. Qualifiers at dependencies take precedence.

* commitsOption - NONE, OPTIONAL, ALWAYS - required - Defines how to render commits for a
change log

* defaultQualifierFallback - Boolean - required - If a qualifier has no previous link, uses the
default qualifier (empty) qualifier.

* dependencies - List - required - Comma-separated list of project links to follow one by one for a
get deep change log. Each item in the list is either a project name, or a project name and
qualifier separated by a colon (:).

* empty - String - required - String to use to render an empty or non existent change log

* title - Boolean - required - Include a title for the change log

Example:

${promotionRun.changelog}

qualifiedLongName

Getting the qualified long name for an entity. For a branch, it’d look like branch project/main.

224

Applicable for:

* project

* branch

* promotion level
* validation stamp
* build

* promotion run

e validation run

Example:

${branch.qualifiedLongName}

release

Gets the release/version/label associated to a build or renders an empty string is there is none.
Applicable for:
* build

Example:

${build.release}

scmBranch

Gets the SCM branch associated with a branch. Renders an empty string if there is none.
Applicable for:
* branch

Example:

${branch.scmBranch}

version

Extract a version string from a branch name
Applicable for:

* branch

225

Configuration:

 default - String - required - Default value to use

* policy - NAME_ONLY, DISPLAY_ NAME_OR_NAME, DISPLAY NAME_ONLY - required - Which
branch name to use

Example:

${branch.version}

17.2.3. List of templating functions

» datetime

* lastPromotion
* link

* pipeline

* since

* slot

* user

datetime

Displays the current time
Configuration:

 days - Long - optional - days field

 format - String - optional - format field

* hours - Long - optional - hours field

* minutes - Long - optional - minutes field

* months - Long - optional - months field

* seconds - Long - optional - seconds field

* timezone - String - optional - timezone field

* years - Long - optional - years field

Example:

#.datetime?format=yyyy-MM-dd&timezone=Europe/Brussels&days=1

lastPromotion

Renders the last build having a given promotion in a project

226

Configuration:

* branch - String - optional - Restricting the search to this branch
* link - Boolean - optional - Renders a link to the build or only the name

* name - String - optional - Using the release name or build name. auto for the first available,
release for a required release name, name for only the name

* project - String - required - Project where to look for the build

* promotion - String - required - Name of the promotion level to look for

Example:

#.lastPromotion?project=prj&promotion=BRONZE

link
Creates a link
Configuration:

* href - String - required - Address for the link. This must be a value which is part of the
templating context.

* text - String - required - Text of the link. This must be a value which is part of the templating
context.

Example:

#.1ink?text=PR_TITLE&href=PR_LINK

pipeline
Renders a slot pipeline using its ID
Configuration:
* id - String - optional - ID of the slot pipeline. Defaults to PIPELINE_ID

Example:

#.pipeline
or

#.pipeline?id=workflow.pipeline.targetPipelineld

227

since

Renders a period of time
Configuration:

» format - String - optional - How to render the period. Supported values are: seconds, millis.
Defaults to seconds.

* from - String - required - Origin time. Expression which must be rendered as a date/time

* ref - String - optional - Last time. Expression which is must be rendered as a date/time. Defaults
to current time

Example:

#.since?from=workflowInfo.start

slot

Renders a slot using its ID
Configuration:
¢ id - String - optional - ID of the slot. Defaults to SLOT_ID

Example:

#.slot

user

Displays the current user
Configuration:

 field - NAME, DISPLAY, EMAIL - optional - Field to display for the user. Defaults to the
username.

Example:

#.user

17.2.4. List of templating filters

e Jowercase
* strong

* uppercase

228

e urlencode

lowercase
Making a value lower case

Example:

${project|lowercase}

strong

Making a value in a stronger typography

Example:

${VALUE |string}

uppercase

Making a value upper case

Example:

${project|uppercase}

urlencode
URL encoding of the value

Example:

${branch.scmBranch|urlencode}

17.2.5. List of special templating objects

» Auto-versioning context (av)
* Deployment context (deployment)
* Information about the workflow (workflow)

* Global information about the workflow (workflowInfo)

Auto-versioning context (av)

The av context can be used in templates in the PR title & body templates, in order to access
information about the auto-versioning request.

229

Context: Auto-versioning

Available fields:

* changelog: Changelog for the project & version being updated

o

allQualifiers - Boolean - required - Loop over all qualifiers for the last level of dependencies,
including the default one. Qualifiers at dependencies take precedence.

commitsOption - NONE, OPTIONAL, ALWAYS - required - Defines how to render commits
for a change log

defaultQualifierFallback - Boolean - required - If a qualifier has no previous link, uses the
default qualifier (empty) qualifier.

dependencies - List - required - Comma-separated list of project links to follow one by one
for a get deep change log. Each item in the list is either a project name, or a project name
and qualifier separated by a colon (:).

empty - String - required - String to use to render an empty or non existent change log

title - Boolean - required - Include a title for the change log

Deployment context (deployment)

The deployment context is injected into workflows triggered by deployments being started, run or
completed.

Context: Environments

Available fields:

* changelog: Getting the changelog since a previous deployment

[

[

allQualifiers - Boolean - required - Loop over all qualifiers for the last level of dependencies,
including the default one. Qualifiers at dependencies take precedence.

commitsOption - NONE, OPTIONAL, ALWAYS - required - Defines how to render commits
for a change log

defaultQualifierFallback - Boolean - required - If a qualifier has no previous link, uses the
default qualifier (empty) qualifier.

dependencies - List - required - Comma-separated list of project links to follow one by one
for a get deep change log. Each item in the list is either a project name, or a project name
and qualifier separated by a colon (:).

empty - String - required - String to use to render an empty or non existent change log

since - CANDIDATE, RUNNING, CANCELLED, DONE - required - Status to use when looking
for the previous deployment

title - Boolean - required - Include a title for the change log

 default: Displays a link to the deployment

* id: Displays the ID of the deployment

* link: Displays a link to the deployment

230

* name: Displays the name of the deployment

* number: Displays the number of the deployment

Information about the workflow (workflow)

The workflow context is used to access information about the nodes of the workflow, in notifications
or other templates rendered in the context of the workflow execution.

Context: Workflow
Available fields:

» <node id>: Getting information about a node in the current workflow

o path - String - required - JSON path to the data to render

Global information about the workflow (workflowInfo)

The workflowInfo context is used to access information about the workflow itself, in notifications or
other templates rendered in the context of the workflow execution.

Context: Workflow
Available fields:

* start: Starting time of the workflow

17.3. Event types

Find below the list of all events and their context.

17.3.1. List of events

* auto-versioning-error

* auto-versioning-post-processing-error
* auto-versioning-pr-merge-timeout-error
* auto-versioning-success

¢ delete_branch

¢ delete_build

* delete_configuration

* delete_project

* delete_promotion_level

* delete_promotion_run

* delete_validation_stamp

e disable branch

231

* disable_project

» enable branch

* enable_project

* environment-creation

* environment-deleted

* environment-updated

* image_promotion_level

* image_validation_stamp
* mock

* new_branch

* new_build

* new_configuration

* new_project

* new_promotion_level

* new_promotion_run

* new_validation_run
 new_validation_run_status
* new_validation_stamp

* property_change

» property_delete

* reorder_promotion_level
» reorder_validation_stamp
* slot-creation

* slot-deleted

* slot-pipeline-cancelled

* slot-pipeline-creation

* slot-pipeline-deployed

* slot-pipeline-deploying

* slot-pipeline-status-changed
* slot-pipeline-status-overridden
* slot-updated

* update_branch

* update_build

* update_configuration

* update_project

232

* update_promotion_level
* update_validation_run_status_comment
* update_validation_stamp

* worflow_standalone

auto-versioning-error
When an auto versioning request fails because of a general error.
Context:

* project - project - Target project
* branch - branch - Target branch

* xPromotionRun - promotion run - Source promotion run

VERSION - string - Version being set

MESSAGE - string - Auto versioning message

ERROR - string - Error message

Default template:

Auto versioning of ${project}/${branch} for dependency ${xProject} version
"${VERSION}" has failed.

${MESSAGE}

Error: ${ERROR}

auto-versioning-post-processing-error
When an auto versioning request fails because of the post-processing.
Context:

* project - project - Target project

* branch - branch - Target branch

xPromotionRun - promotion run - Source promotion run

VERSION - string - Version being set

MESSAGE - string - Auto versioning message

LINK - string - Link to the post processing process

Default template:

233

Auto versioning post-processing of ${project}/${branch} for dependency ${xProject}
version "${VERSION}" has failed.

${#.link?text=MESSAGE&href=LINK}

auto-versioning-pr-merge-timeout-error
When an auto versioning request fails because the corresponding PR could not be merged in time.
Context:

* project - project - Target project
* branch - branch - Target branch

* xPromotionRun - promotion run - Source promotion run

VERSION - string - Version being set

PR_NAME - string - Title of the PR having been created

PR_LINK - string - Link to the PR having been created

Default template:

Auto versioning of ${project}/${branch} for dependency ${xProject} version
"${VERSION}" has failed.

Timeout while waiting for the PR to be ready to be merged.

Pull request ${#.1link?text=PR_NAME&href=PR_LINK}

auto-versioning-success

When an auto versioning request succeeds with the creation of a PR (merged or not).
Context:

* project - project - Target project

* branch - branch - Target branch

* xPromotionRun - promotion run - Source promotion run
» VERSION - string - Version being set

» MESSAGE - string - Auto versioning message

* PR_NAME - string - Title of the PR having been created

* PR_LINK - string - Link to the PR having been created

Default template:

234

Auto versioning of ${project}/${branch} for dependency ${xProject} version
"${VERSION}" has been done.

${MESSAGE}

Pull request ${#.link?text=PR_NAME&href=PR_LINK}

delete_branch

When a branch is deleted.
Context:

* project - project - Branch’s project

* BRANCH - string - Name of the deleted branch

Default template:

Branch ${BRANCH} has been deleted from ${project}.

delete_build

When a build is deleted.
Context:

* project - project - Build’s project
* branch - branch - Build’s branch

* BUILD - string - Name of the deleted build

Default template:

Build ${BUILD} for branch ${branch} in ${project} has been deleted.

delete_configuration

When a configuration is deleted.
Context:
* CONFIGURATION - string - Name of the configuration

Default template:

${CONFIGURATION} configuration has been deleted.

235

delete_project

When a project is deleted.
Context:
» PROJECT - string - Name of the deleted project

Default template:

Project ${PROJECT} has been deleted.

delete_promotion_level

When a promotion level is deleted.
Context:

» project - project - Promotion level’s project

e branch - branch - Promotion level’s branch

PROMOTION_LEVEL - string - Deleted promotion level

PROMOTION_LEVEL_ID - string - ID of the deleted promotion level

Default template:

Promotion level ${PROMOTION_LEVEL} for branch ${branch} in ${project} has been
deleted.

delete_promotion_run

When the promotion of a build is deleted.
Context:

* project - project - Project
e branch - branch - Branch
e build - build - Promoted build

» promotionLevel - promotion level - Promotion level

Default template:

Promotion ${promotionLevel} of build ${build} has been deleted for branch ${branch} in
${project}.

236

delete_validation_stamp

When a validation stamp is deleted.
Context:

* project - project - Validation stamp’s project

* branch - branch - Validation stamp’s branch

VALIDATION_STAMP - string - Name of the deleted validation stamp

VALIDATION_STAMP_ID - string - ID of the deleted validation stamp

Default template:

Validation stamp ${VALIDATION_STAMP} for branch ${branch} in ${project} has been
deleted.

disable branch

When a branch is disabled.
Context:

* project - project - Branch’s project

e branch - branch - Disabled branch

Default template:

Branch ${branch} in ${project} has been disabled.

disable_project

When a project is disabled.
Context:
* project - project - Disabled project

Default template:

Project ${project} has been disabled.

enable branch

When a branch becomes enabled again.

Context:

237

* project - project - Branch’s project

e branch - branch - Enabled branch

Default template:

Branch ${branch} in ${project} has been enabled.

enable_project

When a project becomes enabled again.
Context:
* project - project - Enabled project

Default template:

Project ${project} has been enabled.

environment-creation

When an environment is created
Context:

* ENVIRONMENT_ID - string - ID of the environment

» ENVIRONMENT_NAME - string - Name of the environment

Default template:

Environment ${ENVIRONMENT NAME} has been created.

environment-deleted

When an environment is deleted
Context:
» ENVIRONMENT _NAME - string - Name of the environment

Default template:

Environment ${ENVIRONMENT NAME} has been deleted.

238

environment-updated

When an environment is updated
Context:

* ENVIRONMENT_ID - string - ID of the environment

» ENVIRONMENT_NAME - string - Name of the environment

Default template:

Environment ${ENVIRONMENT_NAME} has been updated.

image_promotion_level
When a promotion level’s image is updated.
Context:

* project - project - Promotion level’s project
* branch - branch - Promotion level’s branch

» promotionLevel - promotion level - Updated promotion level

Default template:

Image for promotion level ${promotionLevel} for branch ${branch} in ${project} has
changed.

image_validation_stamp

When a validation stamp’s image is updated.

Context:

» project - project - Validation stamp’s project
* branch - branch - Validation stamp’s branch

* validationStamp - validation stamp - Updated validation stamp

Default template:

Image for validation stamp ${validationStamp} for branch ${branch} in ${project} has
changed.

mock

Mock event

239

Context:
* mock - string - Mock test

Default template:

Mock event

new_branch

When a branch is created.
Context:

» project - project - Branch’s project

e branch - branch - Created branch

Default template:

New branch ${branch} for project ${project}.

new_build

When a build is created.
Context:

» project - project - Build’s project
* branch - branch - Build’s branch

e build - build - Created build

Default template:

New build ${build} for branch ${branch} in ${project}.

new_configuration

When a configuration is created.
Context:
» CONFIGURATION - string - Name of the configuration

Default template:

${CONFIGURATION} configuration has been created.

240

new_project
When a project is created.
Context:
* project - project - Created project

Default template:

New project ${project}.

new_promotion_level

When a promotion level is created.
Context:

* project - project - Promotion level’s project
* branch - branch - Promotion level’s branch

* promotionLevel - promotion level - Created promotion level

Default template:

New promotion level ${promotionLevel} for branch ${branch} in ${project}.

new_promotion_run
When a build is promoted.
Context:

* project - project - Project

* branch - branch - Branch

* build - build - Promoted build

» promotionLevel - promotion level - Promotion level

* promotionRun - promotion run - Promotion run

Default template:

Build ${build} has been promoted to ${promotionLevel} for branch ${branch} in
${project}.

241

new_validation_run

When a build is validated.
Context:

* project - project - Project

* branch - branch - Branch

* build - build - Validated build

* validationStamp - validation stamp - Validation stamp
* validationRun - validation run - Validation run

» STATUS - string - ID of the validation run status

o STATUS_NAME - string - Name of the validation run status

Default template:

Build ${build} has run for the ${validationStamp} with status ${STATUS_NAME} in branch
${branch} in ${project}.

new _validation_run_status

When the status of the validation of a build is updated.
Context:
* project - project - Project
* branch - branch - Branch
* build - build - Validated build
» validationStamp - validation stamp - Validation stamp
* validationRun - validation run - Validation run

* STATUS - string - ID of the validation run status

o STATUS_NAME - string - Name of the validation run status

Default template:

Status for the ${validationStamp} validation ${validationRun} for build ${build} in
branch ${branch} of ${project} has changed to ${STATUS_NAME}.

new_validation_stamp

When a validation stamp is created.

Context:

242

* project - project - Validation stamp’s project
* branch - branch - Validation stamp’s branch

* validationStamp - validation stamp - Created validation stamp

Default template:

New validation stamp ${validationStamp} for branch ${branch} in ${project}.

property_change
When a property is edited.
Context:

* entity - any entity - Entity where the property has been edited
» PROPERTY - string - FQCN of the property type
* PROPERTY_NAME - string - Display name of the property

Default template:

${PROPERTY_NAME} property has changed for ${entity.qualifiedLongName}.

property_delete

When a property is deleted.
Context:

* entity - any entity - Entity where the property has been edited
» PROPERTY - string - FQCN of the property type
» PROPERTY_NAME - string - Display name of the property

Default template:

${PROPERTY_NAME} property has been removed from ${entity.qualifiedLongName}.

reorder_promotion_level

When the promotion levels of a branch are reordered.
Context:

* project - project - Promotion levels project

e branch - branch - Promotion levels branch

243

Default template:

Promotion levels for branch ${branch} in ${project} have been reordered.

reorder_validation_stamp

When the validation stamps of a branch are reordered.
Context:

* project - project - Validation stamps project

* branch - branch - Validation stamps branch

Default template:

Validation stamps for branch ${branch} in ${project} have been reordered.

slot-creation

When a slot is created
Context:

* ENVIRONMENT_ID - string - ID of the environment

ENVIRONMENT _NAME - string - Name of the environment

» project - project - Project for the slot

SLOT_ID - string - ID of the slot

SLOT_QUALIFIER - string - Qualifier of the slot

Default template:

Slot ${#t.slot} for environment ${ENVIRONMENT NAME} has been created.

slot-deleted

When a slot is updated
Context:

* ENVIRONMENT_ID - string - ID of the environment

ENVIRONMENT _NAME - string - Name of the environment

* project - project - Project for the slot

SLOT_ID - string - ID of the slot

SLOT_QUALIFIER - string - Qualifier of the slot

244

Default template:

Slot ${project} (qualifier = "${SLOT_QUALIFIER}") for environment ${ENVIRONMENT_NAME}
has been deleted.

slot-pipeline-cancelled

When a slot pipeline is cancelled
Context:

» ENVIRONMENT_ID - string - ID of the environment

* ENVIRONMENT_NAME - string - Name of the environment
* project - project - Project of the build in the pipeline
e SLOT_ID - string - ID of the slot

* SLOT_QUALIFIER - string - Qualifier of the slot

o PIPELINE_ID - string - ID of the pipeline

* branch-branch - Branch of the build in the pipeline

* build - build - Build in the pipeline

Default template:

Pipeline ${#.pipeline} has been cancelled.

slot-pipeline-creation
When a slot pipeline has started
Context:

* ENVIRONMENT_ID - string - ID of the environment

» ENVIRONMENT_NAME - string - Name of the environment
* project - project - Project of the build in the pipeline
* SLOT_ID - string - ID of the slot

o SLOT_QUALIFIER - string - Qualifier of the slot

o PIPELINE_ID - string - ID of the pipeline

* branch - branch - Branch of the build in the pipeline

* build - build - Build in the pipeline

Default template:

245

Pipeline ${#.pipeline} has started.

slot-pipeline-deployed
When a slot pipeline has completed its deployment
Context:

* ENVIRONMENT_ID - string - ID of the environment

» ENVIRONMENT_NAME - string - Name of the environment
* project - project - Project of the build in the pipeline
* SLOT_ID - string - ID of the slot

o SLOT_QUALIFIER - string - Qualifier of the slot

o PIPELINE_ID - string - ID of the pipeline

 branch - branch - Branch of the build in the pipeline

* build - build - Build in the pipeline

Default template:

Pipeline ${#.pipeline} has been deployed.

slot-pipeline-deploying
When a slot pipeline is starting its deployment
Context:

* ENVIRONMENT_ID - string - ID of the environment

» ENVIRONMENT_NAME - string - Name of the environment
* project - project - Project of the build in the pipeline
* SLOT_ID - string - ID of the slot

» SLOT_QUALIFIER - string - Qualifier of the slot

o PIPELINE_ID - string - ID of the pipeline

* branch - branch - Branch of the build in the pipeline

* build - build - Build in the pipeline

Default template:

Pipeline ${#.pipeline} is starting its deployment.

246

slot-pipeline-status-changed

When a slot pipeline status is updated
Context:

* ENVIRONMENT_ID - string - ID of the environment

» ENVIRONMENT_NAME - string - Name of the environment
* project - project - Project of the build in the pipeline
 SLOT_ID - string - ID of the slot

o SLOT_QUALIFIER - string - Qualifier of the slot

o PIPELINE_ID - string - ID of the pipeline

 branch - branch - Branch of the build in the pipeline

* build - build - Build in the pipeline

Default template:

Pipeline ${#.pipeline} status has been updated.

slot-pipeline-status-overridden

When a slot pipeline status is updated
Context:

* ENVIRONMENT_ID - string - ID of the environment

» ENVIRONMENT_NAME - string - Name of the environment

* project - project - Project of the build in the pipeline

» SLOT_ID - string - ID of the slot

» SLOT_QUALIFIER - string - Qualifier of the slot

o PIPELINE_ID - string - ID of the pipeline

e branch - branch - Branch of the build in the pipeline

* build - build - Build in the pipeline

* PIPELINE_OVERRIDING_USER - string - User who has overridden the pipeline status

Default template:

Pipeline ${#.pipeline} status has been overridden by ${PIPELINE_OVERRIDING_USER}.

slot-updated

When a slot is updated

247

Context:

* ENVIRONMENT_ID - string - ID of the environment

ENVIRONMENT _NAME - string - Name of the environment

* project - project - Project for the slot

SLOT_ID - string - ID of the slot

SLOT_QUALIFIER - string - Qualifier of the slot

Default template:

Slot ${#.slot} for environment ${ENVIRONMENT_NAME} has been updated.

update_branch

When a branch is updated.
Context:

* project - project - Branch’s project

* branch - branch - Updated branch

Default template:

Branch ${branch} in ${project} has been updated.

update_build

When a build is updated.
Context:

» project - project - Build’s project
* branch - branch - Build’s branch

* build - build - Updated build

Default template:

Build ${build} for branch ${branch} in ${project} has been updated.

update_configuration

When a configuration is updated.

Context:

248

* CONFIGURATION - string - Name of the configuration

Default template:

${CONFIGURATION} configuration has been updated.

update_project
When a project is updated.
Context:
» project - project - Updated project

Default template:

Project ${project} has been updated.

update_promotion_level

When a promotion level is updated.
Context:

* project - project - Promotion level’s project
* branch - branch - Promotion level’s branch

» promotionLevel - promotion level - Updated promotion level

Default template:

Promotion level ${promotionLevel} for branch ${branch} in ${project} has changed.

update_validation_run_status_comment

When the status message of the validation of a build is updated.
Context:

* project - project - Project

e branch - branch - Branch

build - build - Validated build

validationStamp - validation stamp - Validation stamp

e validationRun - validation run - Validation run

Default template:

249

A status message for the ${validationStamp} validation ${validationRun} for build
${build} in branch ${branch} of ${project} has changed.

update_validation_stamp

When a validation stamp is updated.
Context:

» project - project - Validation stamp’s project
* branch - branch - Validation stamp’s branch

* validationStamp - validation stamp - Updated validation stamp

Default template:

Validation stamp ${validationStamp} for branch ${branch} in ${project} has been
updated.

worflow_standalone

Event created when launching a standalone workflow
Context:

Default template:

Started a standalone workflow

17.4. Notifications

Find below the list of all notification backends and their configurations.

17.4.1. List of notification backends

* Jenkins (jenkins)

* Jira ticket creation (jira-creation)

* Jira link creation (jira-1link)

* Jira Service Desk (jira-service-desk)
e Mail (mail)

e Ontrack validation (ontrack-validation)

Slack (slack)

Webhook (webhook)

250

o Workflow (workflow)

17.4.2. Jenkins (jenkins)
This channel is used to trigger remote Jenkins jobs with some parameters.
This channel does not use the custom template.
Links:
* Jenkins notifications
Configuration:

* callMode - ASYNC, SYNC - required - How to call the Jenkins job. ASYNC (the default) means that
the job is called in "fire and forget" mode. When set to SYNC, Ontrack will wait for the
completion of the job to success, with a given timeout (not recommended).

 config - String - required - Name of the Jenkins configuration to use for the connection.
* job - String - required - URL of the Jenkins job to call
* parameters - List - required - Parameters to send to to the job

o name - String - required - Name of the parameter

o value - String - required - Value of the parameter

* timeout - Int - required - Timeout in seconds
Output:

* buildUrl - String - optional - URL to the build (only available when call mode is SYNC)
* jobUrl - String - required - URL to the job
* parameters - List - required - Parameters sent to the job

o name - String - required - Name of the parameter

- value - String - required - Value of the parameter

17.4.3. Jira ticket creation (jira-creation)
Creation of a Jira ticket
Configuration:

 assignee - String - optional - Username of the assignee
» configName - String - required - Name of the Jira configuration to use for the connection
» customFields - List - required - List of custom fields for the ticket

o name - String - required - Name of the field

o value - JSON - required - Value for the field, as understood by the Jira API

« fixVersion - String - optional - Name of the fix version to assign to the ticket

251

* issueType - String - required - Name of the issue type to use for the ticket
* labels - List - required - List of labels for the ticket

* projectName - String - required - Key of the Jira project where to create the ticket

titleTemplate - String - required - (template) Summary of the ticket

» useExisting - Boolean - required - If true, no ticket is created if it exists already
Output:

* body - String - optional - Actual body for the ticket
» customFields - List - optional - Actual custom fields of the ticket
o name - String - required - Name of the field
o value - JSON - required - Value for the field, as understood by the Jira API
* existing - Boolean - optional - True if the ticket was already existing
« fixVersion - String - optional - Actual fix version assigned to the ticket
* jql - String - optional - JQL query used to identify the existing ticket
* labels - List - optional - Actual labels of the ticket
* ticketKey - String - optional - Ticket key
« title - String - optional - Actual summary of the ticket

* url - String - optional - URL to the ticket page

17.4.4. Jira link creation (jira-1link)
Linking two Jira tickets together
Configuration:

* configName - String - required - Name of the Jira configuration to use for the connection
* linkName - String - required - Name of the link
* sourceQuery - String - required - JQuery to get the source ticket

* targetQuery - String - required - JQuery to get the target ticket
Output:
» sourceTicket - String - required - Source ticket
* targetTicket - String - required - Target ticket
17.4.5. Jira Service Desk (jira-service-desk)
This channel is used to create a Jira Service Desk ticket.
This channel does not use the custom template.

Configuration:

252

* configName - String - required - Name of the Jira configuration to use for the connection
» fields - List - required - List of fields to set into the service desk ticket

o name - String - required - Name of the field

> value - JSON - required - Value for the field, as understood by the Jira API

* requestStatus - CLOSED, OPEN, ALL - optional - If looking for existing tickets, which type of
requests to look for (ALL by default)

* requestTypeld - Int - required - ID of the Request Type of the ticket to create

» searchTerm - String - optional - Search token to use to identify any existing ticket. This is a
template.

 serviceDeskId - Int - required - ID of the Service Desk where to create the ticket

» useExisting - Boolean - required - If true, no ticket is created if it exists already
Output:

* existing - Boolean - optional - True if the ticket was already existing
* fields - List - optional - List of actual fields which have been set
o name - String - required - Name of the field
> value - JSON - required - Value for the field, as understood by the Jira API
* requestTypeld - Int - required - ID of the Request Type of the created ticket
» serviceDeskId - Int - required - ID of the Service Desk where the ticket has been created
* ticketKey - String - optional - Key of the created ticket

* url - String - optional - URL to the created ticket
17.4.6. Mail (mail)
Sending a message by mail. The notification template is used for the body of the mail.

Configuration:

* cc- String - optional - Comma-separated list of mail targets (cc)
» subject - String - required - (template) Mail subject

* to - String - required - Comma-separated list of mail targets (to)
Output:

* body - String - required - Actual generated body for the mail
* cc - String - optional - List of recipients in cc
 subject - String - required - Actual generated subject for the mail

* to - String - required - List of recipients

253

17.

4.7. Ontrack validation (ontrack-validation)

Validates a build in Ontrack

Configuration:

branch - String - optional - [template] Name of the branch to validate. If not provided, looks for
the event’s branch if available.

build - String - optional - [template] Name of the build to validate. If not provided, looks for the
event’s build if available.

project - String - optional - [template] Name of the project to validate. If not provided, looks for
the event’s project if available.

runTime - String - optional - Run time. Can be a template must be rendered as a number of
seconds.

validation - String - required - Name of the validation stamp to use.

Output:

17.

runld - Int - required - ID of the validation run

4.8. Slack (slack)

Sending messages to Slack. The notification template is used for the message.

Links:

Slack documentation

Configuration:

Channel - String - required - Slack channel

Notification type - INFO, SUCCESS, WARNING, ERROR - required - Used for the color of the
message

Output:

17.

message - String - required - Actual content of the message

4.9. Webhook (webhook)

Calling an external webhook

This channel does not use the custom template.

Configuration:

name - String - required - Name of the webhook to use

Output:

254

» payload - Object - required - Description of the payload sent to the webhook
- data - JSON - required - Webhook actual payload
o type - String - required - Webhook type
o uuid - String - required - Unique ID for the payload

17.4.10. Workflow (workflow)
Launches a workflow

This channel does not use the custom template.
Configuration:

* pauseMs - Long - required - (used for test only) Short pause before launching the workflow
» workflow - Object - required - Workflow to run

o name - String - required - Display name for the workflow

- nodes - List - required - List of nodes in the workflow

= data - JSON - required - Raw data associated with the node, to be used by the node
executor.

= description - String - optional - Description of the node in its workflow.
= executorld - String - required - ID of the executor to use
= id - String - required - Unique ID of the node in its workflow.
= parents - List - required - List of the IDs of the parents for this node
= id - String - required - ID of the parent node

= timeout - Long - required - Timeout in seconds (5 minutes by default)
Output:

» workflowInstanceld - String - required - ID of the workflow instance. Can be used to track the
progress and outcome of the workflow.

17.5. Workflow nodes executors

Find below the list of all workflow node executors and their configurations.

17.5.1. List of workflow node executors

* Auto-versioning (auto-versioning)
* Mock (mock)

» Notification (notification)

» Pause (pause)

* Pipeline creation (slot-pipeline-creation)

255

* Deployed pipeline (slot-pipeline-deployed)

* Deploying pipeline (slot-pipeline-deploying)
Unresolved directive in workflow-node-executors/index.adoc - include::workflow-node-executor-
auto-versioning.adoc[] = Unresolved directive in workflow-node-executors/index.adoc -
include::workflow-node-executor-mock.adoc[] Unresolved directive in workflow-node-
executors/index.adoc - include::workflow-node-executor-notification.adoc[] Unresolved directive in
workflow-node-executors/index.adoc - include::workflow-node-executor-pause.adoc[] Unresolved
directive in workflow-node-executors/index.adoc - include::workflow-node-executor-slot-pipeline-
creation.adoc[] Unresolved directive in workflow-node-executors/index.adoc - include::workflow-

node-executor-slot-pipeline-deployed.adoc[] Unresolved directive in workflow-node-
executors/index.adoc - include::workflow-node-executor-slot-pipeline-deploying.adoc|]

17.6. List of properties

» Artifactory promotion sync
* Auto-versioning

* Bitbucket Cloud configuration
* Auto promotion levels

* Auto promotion

* Auto validation stamps

* Build link display options

e Links

* Main build links

* Message

* Meta information

* Previous promotion condition
* Promotion dependencies

* Release

» Validation on release/label
* Branching Model

* Git branch

* Git commit

* Git configuration

* GitHub configuration

* GitHub Workflow Run

* GitHub Workflow Job

* GitLab configuration

256

* Jenkins Build

* Jenkins Job

JIRA Links to follow

* SonarQube

Auto-disabling of branches based on patterns
» Stale branches

 Bitbucket Server configuration

17.6.1. Artifactory promotion sync

ID: net.nemerosa.ontrack.extension.artifactory.property.ArtifactoryPromotionSyncPropertyType
Synchronisation of the promotions with Artifactory build statuses
Scope:
* branch
Configuration:

* buildName - String - required - Artifactory build name

buildNameFilter - String - required - Artifactory build name filter

 configuration - String - required - Name of the Artifactory configuration

interval - Int - required - Interval between each synchronisation in minutes.

17.6.2. Auto-versioning
ID: net.nemerosa.ontrack.extension.av.project.AutoVersioningProjectPropertyType
Auto-versioning rules at project level
Scope:
* project
Configuration:

* branchExcludes - List - optional - List of regular expressions. AV requests match if no regular
expression is matched by the target branch name. If empty, the target branch is considered
matching.

* branchIncludes - List - optional - List of regular expressions. AV requests match if at least one
regular expression is matched by the target branch name. If empty, all target branches match
(the default).

 lastActivityDate - LocalDateTime - optional - If defined, any target branch whose last activity
(last build creation) is before this date will be ignored by the auto-versioning

257

17.6.3. Bitbucket Cloud configuration

ID:
net.nemerosa.ontrack.extension.bitbucket.cloud.property.BitbucketCloudProjectConfigurationPrope

rtyType

Associates the project with a Bitbucket Cloud repository
Scope:

* project
Configuration:

» configuration - String - required - Name of the Bitbucket Cloud configuration

* indexationInterval - Int - required - How often to index the repository, in minutes. Use 0 to
disable indexation.

* issueServiceConfigurationldentifier - String - optional - Identifier for the issue service
* repository - String - required - Name of the repository
17.6.4. Auto promotion levels

ID: net.nemerosa.ontrack.extension.general.AutoPromotionLevelPropertyType

If set, this property allows promotion levels to be created automatically from predefined promotion
levels

Scope:
* project
Configuration:

* isAutoCreate - Boolean - required - isAutoCreate field

17.6.5. Auto promotion
ID: net.nemerosa.ontrack.extension.general.AutoPromotionPropertyType

Allows a promotion level to be granted on a build as soon as a list of validation stamps and/or other
promotions has been passed

Scope:
* promotion level
Configuration:

» exclude - String - required - Regular expression to exclude validation stamps by name

* include - String - required - Regular expression to include validation stamps by name

258

* promotionLevels - List - required - List of needed promotion levels

» validationStamps - List - required - List of needed validation stamps
17.6.6. Auto validation stamps
ID: net.nemerosa.ontrack.extension.general.AutoValidationStampPropertyType

If set, this property allows validation stamps to be created automatically from predefined
validation stamps

Scope:
* project
Configuration:

* autoCreate - Boolean - required - If true, creates validations from predefined ones

* autoCreateIfNotPredefined - Boolean - required - If true, creates validations even if not
predefined

17.6.7. Build link display options
ID: net.nemerosa.ontrack.extension.general.BuildLinkDisplayPropertyType
Configuration of display options for the build links towards this project.
Scope:

* project
Configuration:

» useLabel - Boolean - required - Configuration at project label to specify that a build link
decoration should use the release/label of a build when available. By default, it displays the
release name if available, and then the build name as a default.

17.6.8. Links

ID: net.nemerosa.ontrack.extension.general.LinkPropertyType
List of links.

Scope:

* project

* branch

* promotion level
* validation stamp

* build

259

e promotion run

e validation run
Configuration:

¢ links - List - required - links field

17.6.9. Main build links
ID: net.nemerosa.ontrack.extension.general.MainBuildLinksProjectPropertyType
List of project labels which describes the list of build links to display in a build links decoration.
Scope:
* project
Configuration:
¢ labels - List - required - labels field

» overrideGlobal - Boolean - required - overrideGlobal field

17.6.10. Message

ID: net.nemerosa.ontrack.extension.general.MessagePropertyType

Associates an arbitrary message (and its type) to an entity. Will be displayed as a decorator in the
UL

Scope:

* project

* branch

* promotion level
* validation stamp
* build

* promotion run

« validation run
Configuration:
* text - String - required - Content of the message

* type - ERROR, WARNING, INFO - required - Type of message

17.6.11. Meta information

ID: net.nemerosa.ontrack.extension.general.MetalnfoPropertyType

260

List of meta information properties
Scope:

* project

* branch

* promotion level
* validation stamp
* build

* promotion run

 validation run
Configuration:

* items - List - required - items field

17.6.12. Previous promotion condition

ID: net.nemerosa.ontrack.extension.general.PreviousPromotionConditionPropertyType

Makes a promotion conditional based on the fact that a previous promotion has been granted.

Scope:

* project
* branch

* promotion level
Configuration:

» previousPromotionRequired - Boolean - required - previousPromotionRequired field

17.6.13. Promotion dependencies
ID: net.nemerosa.ontrack.extension.general.PromotionDependenciesPropertyType
List of promotions a promotion depends on before being applied.
Scope:
* promotion level
Configuration:

* dependencies - List - required - dependencies field

261

17.6.14. Release
ID: net.nemerosa.ontrack.extension.general.ReleasePropertyType
Release indicator on the build.
Scope:
* build
Configuration:

* name - String - required - name field

17.6.15. Validation on release/label
ID: net.nemerosa.ontrack.extension.general.ReleaseValidationPropertyType
When set, adding a release/label on a build will also validate this build.
Scope:

* branch
Configuration:

 validation - String - required - Validation to set whenever the release/label property is set.

17.6.16. Branching Model
ID: net.nemerosa.ontrack.extension.git.branching.BranchingModelPropertyType
Defines the branching model used by a project
Scope:
* project
Configuration:

» patterns - List - required - List of branch patterns (name & value). The name is the category of
branch and the value is a regular expression on the SCM branch.

17.6.17. Git branch

ID: net.nemerosa.ontrack.extension.qgit.property.GitBranchConfiqurationPropertyType
Git branch

Scope:

e branch

262

Configuration:

* branch - String - required - Git branch or pull request ID
* buildCommitLink - Object - optional - How builds are linked to their Git commit
- data - JSON - optional - Configuration of the service
o id - String - required - ID of the service
* buildTaglInterval - Int - required - Interval in minutes for build/tag synchronization
* isOverride - Boolean - required - Build overriding policy when synchronizing
17.6.18. Git commit
ID: net.nemerosa.ontrack.extension.git.property.GitCommitPropertyType
Git commit
Scope:
* build
Configuration:

* commit - String - required - Commit hash

17.6.19. Git configuration
Deprecated: Will be removed in V5. Pure Git configuration won’t be supported any longer.
ID: net.nemerosa.ontrack.extension.git.property.GitProjectConfigurationPropertyType
Associates the project with a Git repository
Scope:

* project
Configuration:

» configuration - String - required - Name of the Git configuration

17.6.20. GitHub configuration
ID: net.nemerosa.ontrack.extension.qgithub.property.GitHubProjectConfiqgurationPropertyType
Associates the project with a GitHub repository
Scope:
* project

Configuration:

263

* configuration - String - required - Name of the configuration

* indexationInterval - Int - required - How often to index the repository, in minutes. Use 0 to
disable indexation.

* issueServiceConfigurationIdentifier - String - optional - Identifier for the issue service

* repository - String - required - GitHub repository, ie. org/name
17.6.21. GitHub Workflow Run
ID: net.nemerosa.ontrack.extension.qgithub.workflow.BuildGitHubWorkflowRunPropertyType
Link to the GitHub Workflow Run which created this build.
Scope:
* build
Configuration:

» workflows - List - required - All workflows associated to a build.
- event - String - optional - Event having led to the creation of this build
o name - String - required - Name of the workflow
o runld - Long - required - ID of the run
o runNumber - Int - required - Number of the run
o running - Boolean - required - True if the run is still flagged as running

o url - String - required - Link to the GitHub Workflow run
17.6.22. GitHub Workflow Job
ID: net.nemerosa.ontrack.extension.qgithub.workflow.ValidationRunGitHubWorkflowJobPropertyType
Link to the GitHub Workflow Job which created this validation run.
Scope:
« validation run
Configuration:

* event - String - optional - Event having led to the creation of this validation

* job - String - required - Name of the workflow job which created this validation
* name - String - required - Name of the workflow

* runld - Long - required - ID of the run

* runNumber - Int - required - Number of the run

* running - Boolean - required - True if the run is still flagged as running

¢ url - String - required - Link to the GitHub Workflow run

264

17.6.23. GitLab configuration
ID: net.nemerosa.ontrack.extension.gitlab.property.GitLabProjectConfigurationPropertyType
Associates the project with a GitLab repository
Scope:
* project
Configuration:

* configuration - String - required - Name of the GitLab configuration

* indexationInterval - Int - required - How often to index the repository, in minutes. Use 0 to
disable indexation.

* issueServiceConfigurationIdentifier - String - optional - Issue service identifier
* repository - String - required - Repository name

17.6.24. Jenkins Build

ID: net.nemerosa.ontrack.extension.jenkins.JenkinsBuildPropertyType

Link to a Jenkins Build

Scope:

* build
* promotion run

e validation run

Configuration:

build - Int - required - Number of the build

» configuration - String - required - Name of the Jenkins configuration
» configuration - String - required - Name of the Jenkins configuration
* configuration - String - required - Name of the Jenkins configuration

* job - String - required - Path to the Jenkins job, relative to root. It may or may not include /job
URL separators.

* job - String - required - Path to the Jenkins job, relative to root. It may or may not include /job
URL separators.

17.6.25. Jenkins Job
ID: net.nemerosa.ontrack.extension.jenkins.JenkinsJobPropertyType

Link to a Jenkins Job

265

Scope:

* project
* branch
* promotion level

* validation stamp
Configuration:

* configuration - String - required - Name of the Jenkins configuration
* configuration - String - required - Name of the Jenkins configuration

* job - String - required - Path to the Jenkins job, relative to root. It may or may not include /job
URL separators.

17.6.26. JIRA Links to follow
Deprecated: Will be removed in V5. Not used any longer.
ID: net.nemerosa.ontrack.extension.jira.JIRAFollowLinksPropertyType
List of links to follow when displaying information about an issue.
Scope:

* project
Configuration:

* linkNames - List - required - List of links to follow when displaying information about an issue.

17.6.27. SonarQube
ID: net.nemerosa.ontrack.extension.sonarqube.property.SonarQubePropertyType
Association with a SonarQube project.
Scope:
* project

Configuration:

branchModel - Boolean - required - branchModel field

* branchPattern - String - optional - branchPattern field

* configuration - String - required - Name of the SonarQube configuration
» key - String - required - key field

* measures - List - required - measures field

266

» override - Boolean - required - override field
» projectUrl - String - required - projectUrl field

 validationMetrics - Boolean - required - If checked, collected SQ measures will be attached as
metrics to the validation.

validationStamp - String - required - validationStamp field

17.6.28. Auto-disabling of branches based on patterns

ID: net.nemerosa.ontrack.extension.stale.AutoDisablingBranchPatternsPropertyType

Given a list of patterns and their behaviour, allows the disabling of branches based on their
Ontrack names.

Scope:
* project
Configuration:
* items - List - required - List of patterns and their behaviour
o size - Int - required - size field
17.6.29. Stale branches
ID: net.nemerosa.ontrack.extension.stale.StalePropertyType
Allows to disable or delete stale branches
Scope:
* project
Configuration:

* deletingDuration - Int - optional - Number of days of inactivity after a branch has been
disabled after which the branch is deleted. If 0, the branches are never deleted.

* disablingDuration - Int - required - Number of days of inactivity after which the branch is
disabled

» excludes - String - optional - Can define a regular expression for exceptions to the includes rule

* includes - String - optional - Regular expression to identify branches which will never be
disabled not deleted

» promotionsToKeep - List - optional - List of promotions to always keep. If a branch has at least
one build having one of these promotions, the branch will never be disabled not deleted.

17.6.30. Bitbucket Server configuration

ID: net.nemerosa.ontrack.extension.stash.property.StashProjectConfigurationPropertyType

267

Associates the project with a Bitbucket Server repository
Scope:

* project
Configuration:

» configuration - String - required - Name of the Bitbucket Server configuration

* indexationInterval - Int - required - How often to index the repository, in minutes. Use 0 to
disable indexation.

* issueServiceConfigurationIdentifier - String - optional - Identifier for the issue service
* project - String - required - Name of the project

* repository - String - required - Name of the repository

268

	Ontrack Documentation 4.13.7
	Table of Contents
	Chapter 1. Quick start
	1.1. On Kubernetes
	1.2. With Docker Compose

	Chapter 2. Installation
	2.1. Docker Compose installation
	2.2. Docker installation
	2.3. Helm installation
	2.4. Package installation
	2.4.1. RPM installation
	2.4.2. Debian installation

	2.5. JAR installation
	2.6. Installation dependencies
	2.6.1. Postgres
	2.6.2. Elasticsearch
	2.6.3. RabbitMQ

	Chapter 3. Setup
	3.1. Configuration as Code
	3.1.1. [experimental] Casc secrets
	3.1.2. Casc schema
	3.1.3. Examples
	3.1.4. Controls
	3.1.5. Upload
	3.1.6. Using a JSON schema to edit Casc YAML files

	Chapter 4. Authentication
	4.1. Built-in authentication
	4.2. LDAP authentication
	4.2.1. LDAP general setup
	4.2.2. LDAP group mapping

	4.3. OpenID authentication
	4.3.1. Keycloak setup
	4.3.2. Okta setup

	Chapter 5. Concepts
	Chapter 6. Security
	6.1. Concepts
	6.1.1. Roles
	6.1.2. Global roles
	6.1.3. Project roles
	6.1.4. Accounts
	6.1.5. Account groups

	6.2. General settings
	6.3. Extending the security

	Chapter 7. Feeding information in Ontrack
	7.1. Using the API
	7.2. Ontrack CLI
	7.3. Jenkins plug-in
	7.3.1. Jenkins plug-in
	7.3.2. Jenkins pipeline library

	7.4. GitHub
	7.4.1. GitHub Ingestion Hook
	7.4.2. Ontrack CLI & GitHub Actions

	Chapter 8. Features
	8.1. Managing projects
	8.2. Managing branches
	8.2.1. Managing the branches in the project page
	8.2.2. Branch favorites
	8.2.3. Pull requests
	8.2.4. Managing stale branches
	8.2.5. Validation stamp filters
	Using filters
	Editing filters
	Sharing
	Authorisations

	8.2.6. Validation stamp display options

	8.3. Working with SCM
	8.3.1. SCM Catalog
	Model
	SCM Catalog list
	Orphan project decoration
	Project labels
	Teams
	Catalog synchronization
	GraphQL schema
	Metrics
	Administration
	Specific configuration for GitHub

	8.4. Workflows
	8.4.1. Workflows definitions
	8.4.2. Workflows nodes executors
	8.4.3. Workflow templating
	8.4.4. Workflows management
	8.4.5. Workflows settings

	8.5. Delivery metrics
	8.5.1. Single project delivery metrics
	8.5.2. End-to-end project delivery metrics

	8.6. Auto versioning on promotion
	8.6.1. When not to use auto versioning
	8.6.2. General configuration
	Queue configuration
	Dedicated queues

	8.6.3. Branch configuration
	Targeting a series of branches
	Branch expressions
	®ex
	&same
	&most-recent
	&same-release

	Version source
	Additional paths
	Target files types
	Maven POM file
	YAML files
	TOML files

	Integrations
	Jenkins pipeline
	GitHub Actions

	Examples
	Gradle update for last release
	NPM update for last release

	8.6.4. Post processing
	GitHub post-processing
	Jenkins post-processing

	8.6.5. Pull requests
	General configuration
	General configuration for GitHub

	CLIENT mode
	SCM mode
	SCM mode for GitHub

	8.6.6. Auto versioning checks
	8.6.7. Audit logs
	Audit cleanup
	Audit metrics

	8.6.8. Notifications
	8.6.9. Cancellations
	8.6.10. Metrics

	8.7. Project indicators
	8.7.1. Indicators authorization model
	8.7.2. Indicator types management
	Value types

	8.7.3. Indicator edition
	8.7.4. Indicator portfolios
	Management of portfolios
	Portfolio page
	Portfolio edition

	8.7.5. Indicator views
	8.7.6. Importing categories and types
	8.7.7. Exporting categories and types
	8.7.8. Computing indicators
	8.7.9. Configurable indicators

	Chapter 9. Integrations
	9.1. Working with GitHub
	9.1.1. General configuration
	9.1.2. GitHub App authentication
	Creating a GitHub app
	Installing the GitHub app
	Configuring authentication
	GitHub app tokens

	9.1.3. Project configuration
	SCM Catalog configuration

	9.1.4. GitHub metrics

	9.2. GitHub Ingestion
	9.2.1. GitHub ingestion features
	Release property on tag

	9.2.2. Ontrack setup
	9.2.3. GitHub setup
	9.2.4. Link to the GitHub configuration
	9.2.5. Customization
	Customization examples
	Validation stamps
	Configuration as code for projects and branches
	Change log
	v1
	v2

	9.2.6. General settings
	9.2.7. Validation stamp names
	9.2.8. Support for pull requests
	9.2.9. Management
	9.2.10. Metrics
	Hook metrics
	Queue metrics
	Processing metrics

	9.2.11. Configuration
	Routing
	Queues configurations

	9.3. Working with Bitbucket Cloud
	9.3.1. General configuration
	Configuration as Code

	9.3.2. Project configuration

	9.4. JIRA integration
	9.5. Artifactory integration
	9.6. SonarQube integration
	9.6.1. General configuration
	9.6.2. Global settings
	9.6.3. Project configuration
	9.6.4. Identifying measures in SonarQube
	9.6.5. Build measures
	9.6.6. Export of measures
	Collection metrics
	Missing measures
	Measures

	9.7. Integration with Jenkins
	9.7.1. Triggering Jenkins builds on notifications
	Using the API
	Definition as code

	9.8. Notifications
	9.8.1. Notification backends
	9.8.2. Subscriptions
	Local subscriptions
	Global subscriptions

	9.8.3. Recordings
	9.8.4. Examples
	9.8.5. Metrics

	9.9. Integration with Slack
	9.9.1. Slack setup

	9.10. Webhooks
	9.10.1. Definitions
	9.10.2. Authentication
	9.10.3. Timeouts
	9.10.4. Global settings
	9.10.5. Webhooks deliveries
	9.10.6. Payloads
	event payload
	ping payload

	9.10.7. Webhooks metrics

	9.11. Email
	9.11.1. Configuration

	9.12. Terraform Cloud integration
	9.13. Monitoring
	9.13.1. Health
	9.13.2. Metrics
	List of metrics

	9.14. Encryption service
	9.14.1. Selection of the confidential store
	9.14.2. File confidential store
	9.14.3. Secret confidential store
	9.14.4. JDBC confidential store
	9.14.5. Vault confidential store
	9.14.6. Migrating encryption keys
	9.14.7. Losing the encryption keys
	9.14.8. Adding custom confidential store

	Chapter 10. Ontrack API
	10.1. Ontrack GraphQL API
	10.2. Ontrack DSL

	Chapter 11. Administration
	11.1. Accounts management
	11.2. Management end points
	11.2.1. REST info
	11.2.2. Actuator end points

	Chapter 12. Development
	12.1. Developing tests
	12.1.1. Integration tests
	12.1.2. Database integration tests

	Chapter 13. Architecture
	13.1. Modules
	13.2. UI
	13.2.1. Resources
	13.2.2. Resource decorators

	13.3. Forms
	Form object
	Fields
	Common field properties
	help property
	visibleIf property
	text field
	password field
	memo field
	email field
	url field
	namedEntries field
	date field
	yesno field
	dateTime field
	int field
	selection field
	multi-strings field
	multi-selection field
	multi-form field
	Creating your custom fields

	Form usage on the client
	Fields rendering

	13.4. Model

	Chapter 14. Concepts
	14.1. Model filtering
	14.1.1. Jobs
	Job architecture overview
	Job registration

	14.1.2. Encryption

	14.2. Build filters
	14.2.1. Usage
	14.2.2. Implementation
	14.2.3. Reference services
	EntityDataStore

	14.3. Technology
	14.3.1. Client side
	14.3.2. Server side
	14.3.3. Layers

	Chapter 15. Extending Ontrack
	15.1. Preparing an extension
	15.2. Extension ID
	15.3. Coding an extension
	15.4. Extension options
	15.5. Writing tests for your extension
	15.6. List of extension points
	15.7. Running an extension
	15.7.1. Using Gradle

	15.8. Packaging an extension
	15.9. Extension dependencies
	15.10. Deploying an extension
	15.10.1. Using the Docker image
	15.10.2. Using the CentOS or Debian/Ubuntu package
	15.10.3. In standalone mode
	15.10.4. Extending properties
	Java components
	Web components
	Property search

	15.10.5. Extending decorators
	Java components
	Web components

	15.10.6. Extending the user menu
	Extension component

	15.10.7. Extending pages
	Extension menus
	From the global user menu
	From an entity page

	Extension global settings
	Extension page
	Extension API
	Extension API resource decorators

	15.10.8. Extending event types
	15.10.9. Extending validation data
	15.10.10. Extending GraphQL
	Preparing the extension
	Custom types
	Root queries
	Extra fields
	Built-in scalar fields
	Testing GraphQL

	15.10.11. Extending cache
	15.10.12. Extending metrics
	Meter registry direct usage
	Validation run metrics
	Run info listeners
	Metrics export service

	15.10.13. Using Kotlin in extensions
	15.10.14. Extending the settings
	15.10.15. Extending the security
	Adding functions
	Adding roles

	15.10.16. Extending confidential stores
	15.10.17. Free text annotations
	15.10.18. Label providers
	Implementation
	Activation

	15.10.19. Extending promotion checks
	15.10.20. Extending the search
	Search indexer overview
	Search indexation
	Search results
	Search index items
	Search indexation mapping
	Search indexation jobs
	Search result icon
	Search indexing on events

	Chapter 16. Operations
	16.1. Metrics
	16.2. Elastic metrics
	16.3. InfluxDB metrics
	16.3.1. InfluxDB management

	16.4. Logging
	16.4.1. Enabling JSON logging

	Chapter 17. Appendixes
	17.1. Configuration properties
	17.1.1. Notifications configuration
	17.1.2. WorkflowConfigurationProperties
	17.1.3. General configuration
	17.1.4. GitHub configuration
	17.1.5. GitHub Ingestion configuration
	17.1.6. Jenkins configuration
	17.1.7. Auto-versioning configuration
	17.1.8. Terraform Cloud configuration
	17.1.9. Time since event metrics configuration
	17.1.10. Git configuration
	17.1.11. Git Search configuration
	17.1.12. Queues configuration
	17.1.13. Recordings configuration
	17.1.14. CasC configuration
	17.1.15. Indicators configuration
	17.1.16. License configuration
	17.1.17. Embedded license configuration
	17.1.18. Fixed license configuration
	17.1.19. StripeLicenseConfigurationProperties
	17.1.20. Artifactory configuration
	17.1.21. Vault configuration
	17.1.22. InfluxDB configuration
	17.1.23. ElasticSearch metrics configuration
	17.1.24. RabbitMQ configuration

	17.2. Templating engine
	17.2.1. Execution contexts
	Auto-versioning context

	17.2.2. List of templating sources
	Build.changelog
	description
	linked
	meta
	PromotionRun.changelog
	qualifiedLongName
	release
	scmBranch
	version

	17.2.3. List of templating functions
	datetime
	lastPromotion
	link
	pipeline
	since
	slot
	user

	17.2.4. List of templating filters
	lowercase
	strong
	uppercase
	urlencode

	17.2.5. List of special templating objects
	Auto-versioning context (av)
	Deployment context (deployment)
	Information about the workflow (workflow)
	Global information about the workflow (workflowInfo)

	17.3. Event types
	17.3.1. List of events
	auto-versioning-error
	auto-versioning-post-processing-error
	auto-versioning-pr-merge-timeout-error
	auto-versioning-success
	delete_branch
	delete_build
	delete_configuration
	delete_project
	delete_promotion_level
	delete_promotion_run
	delete_validation_stamp
	disable_branch
	disable_project
	enable_branch
	enable_project
	environment-creation
	environment-deleted
	environment-updated
	image_promotion_level
	image_validation_stamp
	mock
	new_branch
	new_build
	new_configuration
	new_project
	new_promotion_level
	new_promotion_run
	new_validation_run
	new_validation_run_status
	new_validation_stamp
	property_change
	property_delete
	reorder_promotion_level
	reorder_validation_stamp
	slot-creation
	slot-deleted
	slot-pipeline-cancelled
	slot-pipeline-creation
	slot-pipeline-deployed
	slot-pipeline-deploying
	slot-pipeline-status-changed
	slot-pipeline-status-overridden
	slot-updated
	update_branch
	update_build
	update_configuration
	update_project
	update_promotion_level
	update_validation_run_status_comment
	update_validation_stamp
	worflow_standalone

	17.4. Notifications
	17.4.1. List of notification backends
	17.4.2. Jenkins (jenkins)
	17.4.3. Jira ticket creation (jira-creation)
	17.4.4. Jira link creation (jira-link)
	17.4.5. Jira Service Desk (jira-service-desk)
	17.4.6. Mail (mail)
	17.4.7. Ontrack validation (ontrack-validation)
	17.4.8. Slack (slack)
	17.4.9. Webhook (webhook)
	17.4.10. Workflow (workflow)

	17.5. Workflow nodes executors
	17.5.1. List of workflow node executors

	17.6. List of properties
	17.6.1. Artifactory promotion sync
	17.6.2. Auto-versioning
	17.6.3. Bitbucket Cloud configuration
	17.6.4. Auto promotion levels
	17.6.5. Auto promotion
	17.6.6. Auto validation stamps
	17.6.7. Build link display options
	17.6.8. Links
	17.6.9. Main build links
	17.6.10. Message
	17.6.11. Meta information
	17.6.12. Previous promotion condition
	17.6.13. Promotion dependencies
	17.6.14. Release
	17.6.15. Validation on release/label
	17.6.16. Branching Model
	17.6.17. Git branch
	17.6.18. Git commit
	17.6.19. Git configuration
	17.6.20. GitHub configuration
	17.6.21. GitHub Workflow Run
	17.6.22. GitHub Workflow Job
	17.6.23. GitLab configuration
	17.6.24. Jenkins Build
	17.6.25. Jenkins Job
	17.6.26. JIRA Links to follow
	17.6.27. SonarQube
	17.6.28. Auto-disabling of branches based on patterns
	17.6.29. Stale branches
	17.6.30. Bitbucket Server configuration

